Global simulation of dissolved <sup>231</sup>Pa and <sup>230</sup>Th in the ocean and the sedimentary <sup>231</sup>Pa∕<sup>230</sup>Th ratios with the ocean general circulation model COCO ver4.0

<p>Sedimentary <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn math...

Full description

Bibliographic Details
Main Authors: Y. Sasaki, H. Kobayashi, A. Oka
Format: Article
Language:English
Published: Copernicus Publications 2022-03-01
Series:Geoscientific Model Development
Online Access:https://gmd.copernicus.org/articles/15/2013/2022/gmd-15-2013-2022.pdf
_version_ 1819320408344625152
author Y. Sasaki
H. Kobayashi
A. Oka
author_facet Y. Sasaki
H. Kobayashi
A. Oka
author_sort Y. Sasaki
collection DOAJ
description <p>Sedimentary <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">231</mn></msup><mi mathvariant="normal">Pa</mi><msup><mo>/</mo><mn mathvariant="normal">230</mn></msup><mi mathvariant="normal">Th</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="62pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="b118a40effcf5fa5b508e16481bf10eb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-15-2013-2022-ie00003.svg" width="62pt" height="15pt" src="gmd-15-2013-2022-ie00003.png"/></svg:svg></span></span> ratios provide clues to estimate the strength of past ocean circulation. For its estimation, understanding the processes controlling the distributions of <span class="inline-formula"><sup>231</sup></span>Pa and <span class="inline-formula"><sup>230</sup></span>Th in the ocean is important. However, simulations of dissolved and particulate <span class="inline-formula"><sup>231</sup></span>Pa and <span class="inline-formula"><sup>230</sup></span>Th in the modern ocean, recently obtained from the GEOTRACES project, remain challenging. Here we report a model simulation of <span class="inline-formula"><sup>231</sup></span>Pa and <span class="inline-formula"><sup>230</sup></span>Th in the global ocean with COCO ver4.0. Starting from the basic water-column reversible scavenging model, we also introduced the bottom scavenging and the dependence of scavenging efficiency on particle concentration. As demonstrated in a previous study, the incorporation of bottom scavenging improves the simulated distribution of dissolved <span class="inline-formula"><sup>231</sup></span>Pa and <span class="inline-formula"><sup>230</sup></span>Th in the deep ocean, which has been overestimated in models not considering the bottom scavenging. We further demonstrate that introducing the dependence of scavenging efficiency on particle concentration results in a high concentration of dissolved <span class="inline-formula"><sup>230</sup></span>Th in the Southern Ocean as observed in the GEOTRACES data. Our best simulation can well reproduce not only the oceanic distribution of <span class="inline-formula"><sup>231</sup></span>Pa and <span class="inline-formula"><sup>230</sup></span>Th but also the sedimentary <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">231</mn></msup><mi mathvariant="normal">Pa</mi><msup><mo>/</mo><mn mathvariant="normal">230</mn></msup><mi mathvariant="normal">Th</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="62pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="b8319888bc40921273c73b7cd1e5cbe6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-15-2013-2022-ie00004.svg" width="62pt" height="15pt" src="gmd-15-2013-2022-ie00004.png"/></svg:svg></span></span> ratios. Sensitivity analysis reveals that oceanic advection of <span class="inline-formula"><sup>231</sup></span>Pa primarily determines sedimentary <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">231</mn></msup><mi mathvariant="normal">Pa</mi><msup><mo>/</mo><mn mathvariant="normal">230</mn></msup><mi mathvariant="normal">Th</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="62pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="c4b0423d41c5d81802398fc02d125a89"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-15-2013-2022-ie00005.svg" width="62pt" height="15pt" src="gmd-15-2013-2022-ie00005.png"/></svg:svg></span></span> ratios. On the other hand, <span class="inline-formula"><sup>230</sup></span>Th advection and bottom scavenging have an opposite effect to <span class="inline-formula"><sup>231</sup></span>Pa advection on the sedimentary <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M23" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">231</mn></msup><mi mathvariant="normal">Pa</mi><msup><mo>/</mo><mn mathvariant="normal">230</mn></msup><mi mathvariant="normal">Th</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="62pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="19b56b7d101a64fabbf8004913101743"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-15-2013-2022-ie00006.svg" width="62pt" height="15pt" src="gmd-15-2013-2022-ie00006.png"/></svg:svg></span></span> ratios, reducing their latitudinal contrast. Our best simulation shows the realistic residence times of <span class="inline-formula"><sup>231</sup></span>Pa and <span class="inline-formula"><sup>230</sup></span>Th, but simulation without bottom scavenging and dependence of scavenging efficiency on particle concentration significantly overestimates the residence times for both <span class="inline-formula"><sup>231</sup></span>Pa and <span class="inline-formula"><sup>230</sup></span>Th in spite of similar distribution of sedimentary <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M28" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">231</mn></msup><mi mathvariant="normal">Pa</mi><msup><mo>/</mo><mn mathvariant="normal">230</mn></msup><mi mathvariant="normal">Th</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="62pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="22b8c13296a4bf8bfe5fbb6a67ed48a5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-15-2013-2022-ie00007.svg" width="62pt" height="15pt" src="gmd-15-2013-2022-ie00007.png"/></svg:svg></span></span> ratios to our best simulation.</p>
first_indexed 2024-12-24T11:19:06Z
format Article
id doaj.art-933793b5ceee41668f67b0672df777b2
institution Directory Open Access Journal
issn 1991-959X
1991-9603
language English
last_indexed 2024-12-24T11:19:06Z
publishDate 2022-03-01
publisher Copernicus Publications
record_format Article
series Geoscientific Model Development
spelling doaj.art-933793b5ceee41668f67b0672df777b22022-12-21T16:58:18ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032022-03-01152013203310.5194/gmd-15-2013-2022Global simulation of dissolved <sup>231</sup>Pa and <sup>230</sup>Th in the ocean and the sedimentary <sup>231</sup>Pa∕<sup>230</sup>Th ratios with the ocean general circulation model COCO ver4.0Y. SasakiH. KobayashiA. Oka<p>Sedimentary <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">231</mn></msup><mi mathvariant="normal">Pa</mi><msup><mo>/</mo><mn mathvariant="normal">230</mn></msup><mi mathvariant="normal">Th</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="62pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="b118a40effcf5fa5b508e16481bf10eb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-15-2013-2022-ie00003.svg" width="62pt" height="15pt" src="gmd-15-2013-2022-ie00003.png"/></svg:svg></span></span> ratios provide clues to estimate the strength of past ocean circulation. For its estimation, understanding the processes controlling the distributions of <span class="inline-formula"><sup>231</sup></span>Pa and <span class="inline-formula"><sup>230</sup></span>Th in the ocean is important. However, simulations of dissolved and particulate <span class="inline-formula"><sup>231</sup></span>Pa and <span class="inline-formula"><sup>230</sup></span>Th in the modern ocean, recently obtained from the GEOTRACES project, remain challenging. Here we report a model simulation of <span class="inline-formula"><sup>231</sup></span>Pa and <span class="inline-formula"><sup>230</sup></span>Th in the global ocean with COCO ver4.0. Starting from the basic water-column reversible scavenging model, we also introduced the bottom scavenging and the dependence of scavenging efficiency on particle concentration. As demonstrated in a previous study, the incorporation of bottom scavenging improves the simulated distribution of dissolved <span class="inline-formula"><sup>231</sup></span>Pa and <span class="inline-formula"><sup>230</sup></span>Th in the deep ocean, which has been overestimated in models not considering the bottom scavenging. We further demonstrate that introducing the dependence of scavenging efficiency on particle concentration results in a high concentration of dissolved <span class="inline-formula"><sup>230</sup></span>Th in the Southern Ocean as observed in the GEOTRACES data. Our best simulation can well reproduce not only the oceanic distribution of <span class="inline-formula"><sup>231</sup></span>Pa and <span class="inline-formula"><sup>230</sup></span>Th but also the sedimentary <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">231</mn></msup><mi mathvariant="normal">Pa</mi><msup><mo>/</mo><mn mathvariant="normal">230</mn></msup><mi mathvariant="normal">Th</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="62pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="b8319888bc40921273c73b7cd1e5cbe6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-15-2013-2022-ie00004.svg" width="62pt" height="15pt" src="gmd-15-2013-2022-ie00004.png"/></svg:svg></span></span> ratios. Sensitivity analysis reveals that oceanic advection of <span class="inline-formula"><sup>231</sup></span>Pa primarily determines sedimentary <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">231</mn></msup><mi mathvariant="normal">Pa</mi><msup><mo>/</mo><mn mathvariant="normal">230</mn></msup><mi mathvariant="normal">Th</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="62pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="c4b0423d41c5d81802398fc02d125a89"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-15-2013-2022-ie00005.svg" width="62pt" height="15pt" src="gmd-15-2013-2022-ie00005.png"/></svg:svg></span></span> ratios. On the other hand, <span class="inline-formula"><sup>230</sup></span>Th advection and bottom scavenging have an opposite effect to <span class="inline-formula"><sup>231</sup></span>Pa advection on the sedimentary <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M23" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">231</mn></msup><mi mathvariant="normal">Pa</mi><msup><mo>/</mo><mn mathvariant="normal">230</mn></msup><mi mathvariant="normal">Th</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="62pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="19b56b7d101a64fabbf8004913101743"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-15-2013-2022-ie00006.svg" width="62pt" height="15pt" src="gmd-15-2013-2022-ie00006.png"/></svg:svg></span></span> ratios, reducing their latitudinal contrast. Our best simulation shows the realistic residence times of <span class="inline-formula"><sup>231</sup></span>Pa and <span class="inline-formula"><sup>230</sup></span>Th, but simulation without bottom scavenging and dependence of scavenging efficiency on particle concentration significantly overestimates the residence times for both <span class="inline-formula"><sup>231</sup></span>Pa and <span class="inline-formula"><sup>230</sup></span>Th in spite of similar distribution of sedimentary <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M28" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">231</mn></msup><mi mathvariant="normal">Pa</mi><msup><mo>/</mo><mn mathvariant="normal">230</mn></msup><mi mathvariant="normal">Th</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="62pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="22b8c13296a4bf8bfe5fbb6a67ed48a5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-15-2013-2022-ie00007.svg" width="62pt" height="15pt" src="gmd-15-2013-2022-ie00007.png"/></svg:svg></span></span> ratios to our best simulation.</p>https://gmd.copernicus.org/articles/15/2013/2022/gmd-15-2013-2022.pdf
spellingShingle Y. Sasaki
H. Kobayashi
A. Oka
Global simulation of dissolved <sup>231</sup>Pa and <sup>230</sup>Th in the ocean and the sedimentary <sup>231</sup>Pa∕<sup>230</sup>Th ratios with the ocean general circulation model COCO ver4.0
Geoscientific Model Development
title Global simulation of dissolved <sup>231</sup>Pa and <sup>230</sup>Th in the ocean and the sedimentary <sup>231</sup>Pa∕<sup>230</sup>Th ratios with the ocean general circulation model COCO ver4.0
title_full Global simulation of dissolved <sup>231</sup>Pa and <sup>230</sup>Th in the ocean and the sedimentary <sup>231</sup>Pa∕<sup>230</sup>Th ratios with the ocean general circulation model COCO ver4.0
title_fullStr Global simulation of dissolved <sup>231</sup>Pa and <sup>230</sup>Th in the ocean and the sedimentary <sup>231</sup>Pa∕<sup>230</sup>Th ratios with the ocean general circulation model COCO ver4.0
title_full_unstemmed Global simulation of dissolved <sup>231</sup>Pa and <sup>230</sup>Th in the ocean and the sedimentary <sup>231</sup>Pa∕<sup>230</sup>Th ratios with the ocean general circulation model COCO ver4.0
title_short Global simulation of dissolved <sup>231</sup>Pa and <sup>230</sup>Th in the ocean and the sedimentary <sup>231</sup>Pa∕<sup>230</sup>Th ratios with the ocean general circulation model COCO ver4.0
title_sort global simulation of dissolved sup 231 sup pa and sup 230 sup th in the ocean and the sedimentary sup 231 sup pa sup 230 sup th ratios with the ocean general circulation model coco ver4 0
url https://gmd.copernicus.org/articles/15/2013/2022/gmd-15-2013-2022.pdf
work_keys_str_mv AT ysasaki globalsimulationofdissolvedsup231suppaandsup230supthintheoceanandthesedimentarysup231suppasup230supthratioswiththeoceangeneralcirculationmodelcocover40
AT hkobayashi globalsimulationofdissolvedsup231suppaandsup230supthintheoceanandthesedimentarysup231suppasup230supthratioswiththeoceangeneralcirculationmodelcocover40
AT aoka globalsimulationofdissolvedsup231suppaandsup230supthintheoceanandthesedimentarysup231suppasup230supthratioswiththeoceangeneralcirculationmodelcocover40