MCA-YOLOV5-Light: A Faster, Stronger and Lighter Algorithm for Helmet-Wearing Detection
It is an essential measure for workers to wear safety helmets when entering the construction site to prevent head injuries caused by object collision and falling. This paper proposes a lightweight algorithm for helmet-wearing detection based on YOLOV5, which is faster and more robust for helmet dete...
Үндсэн зохиолчид: | Cheng Sun, Shiwen Zhang, Peiqi Qu, Xingjin Wu, Peng Feng, Zhanya Tao, Jin Zhang, Ying Wang |
---|---|
Формат: | Өгүүллэг |
Хэл сонгох: | English |
Хэвлэсэн: |
MDPI AG
2022-09-01
|
Цуврал: | Applied Sciences |
Нөхцлүүд: | |
Онлайн хандалт: | https://www.mdpi.com/2076-3417/12/19/9697 |
Ижил төстэй зүйлс
-
Helmet Wearing State Detection Based on Improved Yolov5s
-н: Yi-Jia Zhang, зэрэг
Хэвлэсэн: (2022-12-01) -
An improved YOLOv8 safety helmet wearing detection network
-н: Xudong Song, зэрэг
Хэвлэсэн: (2024-07-01) -
DS-YOLOv5: A real-time detection and recognition model for helmet wearing
-н: Peirui BAI, зэрэг
Хэвлэсэн: (2023-12-01) -
Yolov5s-PSG: Improved Yolov5s-Based Helmet Recognition in Complex Scenes
-н: Yi Li, зэрэг
Хэвлэсэн: (2025-01-01) -
Research on helmet wearing detection method based on deep learning
-н: Lihong Wei, зэрэг
Хэвлэсэн: (2024-03-01)