Atherosclerotic Plaque Segmentation Based on Strain Gradients: A Theoretical Framework

<i>Background:</i> Atherosclerotic plaque detection is a clinical and technological problem that has been approached by different studies. Nowadays, intravascular ultrasound (IVUS) is the standard used to capture images of the coronary walls and to detect plaques. However, IVUS images ar...

Full description

Bibliographic Details
Main Authors: Álvaro T. Latorre, Miguel A. Martínez, Myriam Cilla, Jacques Ohayon, Estefanía Peña
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/21/4020
_version_ 1827646228736770048
author Álvaro T. Latorre
Miguel A. Martínez
Myriam Cilla
Jacques Ohayon
Estefanía Peña
author_facet Álvaro T. Latorre
Miguel A. Martínez
Myriam Cilla
Jacques Ohayon
Estefanía Peña
author_sort Álvaro T. Latorre
collection DOAJ
description <i>Background:</i> Atherosclerotic plaque detection is a clinical and technological problem that has been approached by different studies. Nowadays, intravascular ultrasound (IVUS) is the standard used to capture images of the coronary walls and to detect plaques. However, IVUS images are difficult to segment, which complicates obtaining geometric measurements of the plaque. <i>Objective:</i> IVUS, in combination with new techniques, allows estimation of strains in the coronary section. In this study, we have proposed the use of estimated strains to develop a methodology for plaque segmentation. <i>Methods:</i> The process is based on the representation of strain gradients and the combination of the Watershed and Gradient Vector Flow algorithms. Since it is a theoretical framework, the methodology was tested with idealized and real IVUS geometries. <i>Results:</i> We achieved measurements of the lipid area and fibrous cap thickness, which are essential clinical information, with promising results. The success of the segmentation depends on the plaque geometry and the strain gradient variable (SGV) that was selected. However, there are some SGV combinations that yield good results regardless of plaque geometry such as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced separators="" open="|" close="|"><mo>▽</mo><msub><mi>ε</mi><mrow><mi>v</mi><mi>M</mi><mi>i</mi><mi>s</mi><mi>e</mi><mi>s</mi></mrow></msub></mfenced><mo>+</mo><mfenced separators="" open="|" close="|"><mo>▽</mo><msub><mi>ε</mi><mrow><mi>r</mi><mi>θ</mi></mrow></msub></mfenced></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced separators="" open="|" close="|"><mo>▽</mo><msub><mi>ε</mi><mrow><mi>y</mi><mi>y</mi></mrow></msub></mfenced><mo>+</mo><mfenced separators="" open="|" close="|"><mo>▽</mo><msub><mi>ε</mi><mrow><mi>r</mi><mi>r</mi></mrow></msub></mfenced></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced separators="" open="|" close="|"><mo>▽</mo><msub><mi>ε</mi><mrow><mi>m</mi><mi>i</mi><mi>n</mi></mrow></msub></mfenced><mo>+</mo><mfenced separators="" open="|" close="|"><mo>▽</mo><msub><mi>ε</mi><mrow><mi>T</mi><mi>r</mi><mi>e</mi><mi>s</mi><mi>c</mi><mi>a</mi></mrow></msub></mfenced></mrow></semantics></math></inline-formula>. These combinations of SGVs achieve good segmentations, with an accuracy between 97.10% and 94.39% in the best pairs. <i>Conclusions:</i> The new methodology provides fast segmentation from different strain variables, without an optimization step.
first_indexed 2024-03-09T18:52:03Z
format Article
id doaj.art-934cac5a2e0645218637db0e66a05f47
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T18:52:03Z
publishDate 2022-10-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-934cac5a2e0645218637db0e66a05f472023-11-24T05:43:39ZengMDPI AGMathematics2227-73902022-10-011021402010.3390/math10214020Atherosclerotic Plaque Segmentation Based on Strain Gradients: A Theoretical FrameworkÁlvaro T. Latorre0Miguel A. Martínez1Myriam Cilla2Jacques Ohayon3Estefanía Peña4Aragón Institute for Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, SpainAragón Institute for Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, SpainAragón Institute for Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, SpainLaboratory TIMC-IMAG, CNRS UMR 5525, Grenoble-Alpes University, 38400 Grenoble, FranceAragón Institute for Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain<i>Background:</i> Atherosclerotic plaque detection is a clinical and technological problem that has been approached by different studies. Nowadays, intravascular ultrasound (IVUS) is the standard used to capture images of the coronary walls and to detect plaques. However, IVUS images are difficult to segment, which complicates obtaining geometric measurements of the plaque. <i>Objective:</i> IVUS, in combination with new techniques, allows estimation of strains in the coronary section. In this study, we have proposed the use of estimated strains to develop a methodology for plaque segmentation. <i>Methods:</i> The process is based on the representation of strain gradients and the combination of the Watershed and Gradient Vector Flow algorithms. Since it is a theoretical framework, the methodology was tested with idealized and real IVUS geometries. <i>Results:</i> We achieved measurements of the lipid area and fibrous cap thickness, which are essential clinical information, with promising results. The success of the segmentation depends on the plaque geometry and the strain gradient variable (SGV) that was selected. However, there are some SGV combinations that yield good results regardless of plaque geometry such as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced separators="" open="|" close="|"><mo>▽</mo><msub><mi>ε</mi><mrow><mi>v</mi><mi>M</mi><mi>i</mi><mi>s</mi><mi>e</mi><mi>s</mi></mrow></msub></mfenced><mo>+</mo><mfenced separators="" open="|" close="|"><mo>▽</mo><msub><mi>ε</mi><mrow><mi>r</mi><mi>θ</mi></mrow></msub></mfenced></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced separators="" open="|" close="|"><mo>▽</mo><msub><mi>ε</mi><mrow><mi>y</mi><mi>y</mi></mrow></msub></mfenced><mo>+</mo><mfenced separators="" open="|" close="|"><mo>▽</mo><msub><mi>ε</mi><mrow><mi>r</mi><mi>r</mi></mrow></msub></mfenced></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced separators="" open="|" close="|"><mo>▽</mo><msub><mi>ε</mi><mrow><mi>m</mi><mi>i</mi><mi>n</mi></mrow></msub></mfenced><mo>+</mo><mfenced separators="" open="|" close="|"><mo>▽</mo><msub><mi>ε</mi><mrow><mi>T</mi><mi>r</mi><mi>e</mi><mi>s</mi><mi>c</mi><mi>a</mi></mrow></msub></mfenced></mrow></semantics></math></inline-formula>. These combinations of SGVs achieve good segmentations, with an accuracy between 97.10% and 94.39% in the best pairs. <i>Conclusions:</i> The new methodology provides fast segmentation from different strain variables, without an optimization step.https://www.mdpi.com/2227-7390/10/21/4020atherosclerosisfibrous cap thicknessfinite element modelintravascular ultrasoundsegmentation methodstrain gradient
spellingShingle Álvaro T. Latorre
Miguel A. Martínez
Myriam Cilla
Jacques Ohayon
Estefanía Peña
Atherosclerotic Plaque Segmentation Based on Strain Gradients: A Theoretical Framework
Mathematics
atherosclerosis
fibrous cap thickness
finite element model
intravascular ultrasound
segmentation method
strain gradient
title Atherosclerotic Plaque Segmentation Based on Strain Gradients: A Theoretical Framework
title_full Atherosclerotic Plaque Segmentation Based on Strain Gradients: A Theoretical Framework
title_fullStr Atherosclerotic Plaque Segmentation Based on Strain Gradients: A Theoretical Framework
title_full_unstemmed Atherosclerotic Plaque Segmentation Based on Strain Gradients: A Theoretical Framework
title_short Atherosclerotic Plaque Segmentation Based on Strain Gradients: A Theoretical Framework
title_sort atherosclerotic plaque segmentation based on strain gradients a theoretical framework
topic atherosclerosis
fibrous cap thickness
finite element model
intravascular ultrasound
segmentation method
strain gradient
url https://www.mdpi.com/2227-7390/10/21/4020
work_keys_str_mv AT alvarotlatorre atheroscleroticplaquesegmentationbasedonstraingradientsatheoreticalframework
AT miguelamartinez atheroscleroticplaquesegmentationbasedonstraingradientsatheoreticalframework
AT myriamcilla atheroscleroticplaquesegmentationbasedonstraingradientsatheoreticalframework
AT jacquesohayon atheroscleroticplaquesegmentationbasedonstraingradientsatheoreticalframework
AT estefaniapena atheroscleroticplaquesegmentationbasedonstraingradientsatheoreticalframework