Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane

<p>We review the capability of current and scheduled satellite observations of atmospheric methane in the shortwave infrared (SWIR) to quantify methane emissions from the global scale down to point sources. We cover retrieval methods, precision and accuracy requirements, inverse and mass balan...

Full description

Bibliographic Details
Main Authors: D. J. Jacob, D. J. Varon, D. H. Cusworth, P. E. Dennison, C. Frankenberg, R. Gautam, L. Guanter, J. Kelley, J. McKeever, L. E. Ott, B. Poulter, Z. Qu, A. K. Thorpe, J. R. Worden, R. M. Duren
Format: Article
Language:English
Published: Copernicus Publications 2022-07-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/22/9617/2022/acp-22-9617-2022.pdf
_version_ 1818017705948610560
author D. J. Jacob
D. J. Varon
D. J. Varon
D. H. Cusworth
D. H. Cusworth
P. E. Dennison
C. Frankenberg
C. Frankenberg
R. Gautam
L. Guanter
L. Guanter
J. Kelley
J. McKeever
L. E. Ott
B. Poulter
Z. Qu
A. K. Thorpe
J. R. Worden
R. M. Duren
R. M. Duren
R. M. Duren
author_facet D. J. Jacob
D. J. Varon
D. J. Varon
D. H. Cusworth
D. H. Cusworth
P. E. Dennison
C. Frankenberg
C. Frankenberg
R. Gautam
L. Guanter
L. Guanter
J. Kelley
J. McKeever
L. E. Ott
B. Poulter
Z. Qu
A. K. Thorpe
J. R. Worden
R. M. Duren
R. M. Duren
R. M. Duren
author_sort D. J. Jacob
collection DOAJ
description <p>We review the capability of current and scheduled satellite observations of atmospheric methane in the shortwave infrared (SWIR) to quantify methane emissions from the global scale down to point sources. We cover retrieval methods, precision and accuracy requirements, inverse and mass balance methods for inferring emissions, source detection thresholds, and observing system completeness. We classify satellite instruments as area flux mappers and point source imagers, with complementary attributes. Area flux mappers are high-precision (<span class="inline-formula">&lt;1</span> %) instruments with 0.1–10 km pixel size designed to quantify total methane emissions on regional to global scales. Point source imagers are fine-pixel (<span class="inline-formula">&lt;60</span> m) instruments designed to quantify individual point sources by imaging of the plumes. Current area flux mappers include GOSAT (2009–present), which provides a high-quality record for interpretation of long-term methane trends, and TROPOMI (2018–present), which provides global continuous daily mapping to quantify emissions on regional scales. These instruments already provide a powerful resource to quantify national methane emissions in support of the Paris Agreement. Current point source imagers include the GHGSat constellation and several hyperspectral and multispectral land imaging sensors (PRISMA, Sentinel-2, Landsat-8/9, WorldView-3), with detection thresholds in the 100–10 000 kg h<span class="inline-formula"><sup>−1</sup></span> range that enable monitoring of large point sources. Future area flux mappers, including MethaneSAT, GOSAT-GW, Sentinel-5, GeoCarb, and CO2M, will increase the capability to quantify emissions at high resolution, and the MERLIN lidar will improve observation of the Arctic. The averaging times required by area flux mappers to quantify regional emissions depend on pixel size, retrieval precision, observation density, fraction of successful retrievals, and return times in a way that varies with the spatial resolution desired. A similar interplay applies to point source imagers between detection threshold, spatial coverage, and return time, defining an observing system completeness. Expanding constellations of point source imagers including GHGSat and Carbon Mapper over the coming years will greatly improve observing system completeness for point sources through dense spatial coverage and frequent return times.</p>
first_indexed 2024-04-14T07:30:23Z
format Article
id doaj.art-93620f9a8336481b969221db741ca40f
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-04-14T07:30:23Z
publishDate 2022-07-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-93620f9a8336481b969221db741ca40f2022-12-22T02:05:53ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242022-07-01229617964610.5194/acp-22-9617-2022Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methaneD. J. Jacob0D. J. Varon1D. J. Varon2D. H. Cusworth3D. H. Cusworth4P. E. Dennison5C. Frankenberg6C. Frankenberg7R. Gautam8L. Guanter9L. Guanter10J. Kelley11J. McKeever12L. E. Ott13B. Poulter14Z. Qu15A. K. Thorpe16J. R. Worden17R. M. Duren18R. M. Duren19R. M. Duren20School of Engineering and Applied Sciences, Harvard University, Cambridge, 02138, USASchool of Engineering and Applied Sciences, Harvard University, Cambridge, 02138, USAGHGSat, Inc., Montreal, H2W 1Y5, CanadaArizona Institutes for Resilience, University of Arizona, Tucson, 85721, USACarbon Mapper, Pasadena, 91109, USADepartment of Geography, University of Utah, Salt Lake City, 84112, USADivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, 91125, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, 91109, USAEnvironmental Defense Fund, Washington, D.C., 20009, USAResearch Institute of Water and Environmental Engineering, Universitat Politecnica de Valencia, Valencia, 46022, SpainEnvironmental Defense Fund, Amsterdam, 1017, The NetherlandsGeoSapient, Inc., Cypress, 77429, USAGHGSat, Inc., Montreal, H2W 1Y5, CanadaNASA GSFC, Greenbelt, 20771, USANASA GSFC, Greenbelt, 20771, USASchool of Engineering and Applied Sciences, Harvard University, Cambridge, 02138, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, 91109, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, 91109, USAArizona Institutes for Resilience, University of Arizona, Tucson, 85721, USACarbon Mapper, Pasadena, 91109, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, 91109, USA<p>We review the capability of current and scheduled satellite observations of atmospheric methane in the shortwave infrared (SWIR) to quantify methane emissions from the global scale down to point sources. We cover retrieval methods, precision and accuracy requirements, inverse and mass balance methods for inferring emissions, source detection thresholds, and observing system completeness. We classify satellite instruments as area flux mappers and point source imagers, with complementary attributes. Area flux mappers are high-precision (<span class="inline-formula">&lt;1</span> %) instruments with 0.1–10 km pixel size designed to quantify total methane emissions on regional to global scales. Point source imagers are fine-pixel (<span class="inline-formula">&lt;60</span> m) instruments designed to quantify individual point sources by imaging of the plumes. Current area flux mappers include GOSAT (2009–present), which provides a high-quality record for interpretation of long-term methane trends, and TROPOMI (2018–present), which provides global continuous daily mapping to quantify emissions on regional scales. These instruments already provide a powerful resource to quantify national methane emissions in support of the Paris Agreement. Current point source imagers include the GHGSat constellation and several hyperspectral and multispectral land imaging sensors (PRISMA, Sentinel-2, Landsat-8/9, WorldView-3), with detection thresholds in the 100–10 000 kg h<span class="inline-formula"><sup>−1</sup></span> range that enable monitoring of large point sources. Future area flux mappers, including MethaneSAT, GOSAT-GW, Sentinel-5, GeoCarb, and CO2M, will increase the capability to quantify emissions at high resolution, and the MERLIN lidar will improve observation of the Arctic. The averaging times required by area flux mappers to quantify regional emissions depend on pixel size, retrieval precision, observation density, fraction of successful retrievals, and return times in a way that varies with the spatial resolution desired. A similar interplay applies to point source imagers between detection threshold, spatial coverage, and return time, defining an observing system completeness. Expanding constellations of point source imagers including GHGSat and Carbon Mapper over the coming years will greatly improve observing system completeness for point sources through dense spatial coverage and frequent return times.</p>https://acp.copernicus.org/articles/22/9617/2022/acp-22-9617-2022.pdf
spellingShingle D. J. Jacob
D. J. Varon
D. J. Varon
D. H. Cusworth
D. H. Cusworth
P. E. Dennison
C. Frankenberg
C. Frankenberg
R. Gautam
L. Guanter
L. Guanter
J. Kelley
J. McKeever
L. E. Ott
B. Poulter
Z. Qu
A. K. Thorpe
J. R. Worden
R. M. Duren
R. M. Duren
R. M. Duren
Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane
Atmospheric Chemistry and Physics
title Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane
title_full Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane
title_fullStr Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane
title_full_unstemmed Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane
title_short Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane
title_sort quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane
url https://acp.copernicus.org/articles/22/9617/2022/acp-22-9617-2022.pdf
work_keys_str_mv AT djjacob quantifyingmethaneemissionsfromtheglobalscaledowntopointsourcesusingsatelliteobservationsofatmosphericmethane
AT djvaron quantifyingmethaneemissionsfromtheglobalscaledowntopointsourcesusingsatelliteobservationsofatmosphericmethane
AT djvaron quantifyingmethaneemissionsfromtheglobalscaledowntopointsourcesusingsatelliteobservationsofatmosphericmethane
AT dhcusworth quantifyingmethaneemissionsfromtheglobalscaledowntopointsourcesusingsatelliteobservationsofatmosphericmethane
AT dhcusworth quantifyingmethaneemissionsfromtheglobalscaledowntopointsourcesusingsatelliteobservationsofatmosphericmethane
AT pedennison quantifyingmethaneemissionsfromtheglobalscaledowntopointsourcesusingsatelliteobservationsofatmosphericmethane
AT cfrankenberg quantifyingmethaneemissionsfromtheglobalscaledowntopointsourcesusingsatelliteobservationsofatmosphericmethane
AT cfrankenberg quantifyingmethaneemissionsfromtheglobalscaledowntopointsourcesusingsatelliteobservationsofatmosphericmethane
AT rgautam quantifyingmethaneemissionsfromtheglobalscaledowntopointsourcesusingsatelliteobservationsofatmosphericmethane
AT lguanter quantifyingmethaneemissionsfromtheglobalscaledowntopointsourcesusingsatelliteobservationsofatmosphericmethane
AT lguanter quantifyingmethaneemissionsfromtheglobalscaledowntopointsourcesusingsatelliteobservationsofatmosphericmethane
AT jkelley quantifyingmethaneemissionsfromtheglobalscaledowntopointsourcesusingsatelliteobservationsofatmosphericmethane
AT jmckeever quantifyingmethaneemissionsfromtheglobalscaledowntopointsourcesusingsatelliteobservationsofatmosphericmethane
AT leott quantifyingmethaneemissionsfromtheglobalscaledowntopointsourcesusingsatelliteobservationsofatmosphericmethane
AT bpoulter quantifyingmethaneemissionsfromtheglobalscaledowntopointsourcesusingsatelliteobservationsofatmosphericmethane
AT zqu quantifyingmethaneemissionsfromtheglobalscaledowntopointsourcesusingsatelliteobservationsofatmosphericmethane
AT akthorpe quantifyingmethaneemissionsfromtheglobalscaledowntopointsourcesusingsatelliteobservationsofatmosphericmethane
AT jrworden quantifyingmethaneemissionsfromtheglobalscaledowntopointsourcesusingsatelliteobservationsofatmosphericmethane
AT rmduren quantifyingmethaneemissionsfromtheglobalscaledowntopointsourcesusingsatelliteobservationsofatmosphericmethane
AT rmduren quantifyingmethaneemissionsfromtheglobalscaledowntopointsourcesusingsatelliteobservationsofatmosphericmethane
AT rmduren quantifyingmethaneemissionsfromtheglobalscaledowntopointsourcesusingsatelliteobservationsofatmosphericmethane