Calibrating the sqHIMMELI v1.0 wetland methane emission model with hierarchical modeling and adaptive MCMC
Estimating methane (CH<sub>4</sub>) emissions from natural wetlands is complex, and the estimates contain large uncertainties. The models used for the task are typically heavily parameterized and the parameter values are not well known. In this study, we perform a Bayesian model cali...
Main Authors: | J. Susiluoto, M. Raivonen, L. Backman, M. Laine, J. Makela, O. Peltola, T. Vesala, T. Aalto |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2018-03-01
|
Series: | Geoscientific Model Development |
Online Access: | https://www.geosci-model-dev.net/11/1199/2018/gmd-11-1199-2018.pdf |
Similar Items
-
Efficient multi-scale Gaussian process regression for massive remote sensing data with satGP v0.1.2
by: J. Susiluoto, et al.
Published: (2020-07-01) -
Constraining ecosystem model with adaptive Metropolis algorithm using boreal forest site eddy covariance measurements
by: J. Mäkelä, et al.
Published: (2016-12-01) -
Parameter calibration and stomatal conductance formulation comparison for boreal forests with adaptive population importance sampler in the land surface model JSBACH
by: J. Mäkelä, et al.
Published: (2019-09-01) -
Efficient Bayesian inference for large chaotic dynamical systems
by: S. Springer, et al.
Published: (2021-07-01) -
Eucalyptus microthecan morfologiset ja fysiologiset vasteet kuivuuteen
by: Sanna Susiluoto, et al.
Published: (2007-01-01)