Summary: | Interval games are an extension of cooperative coalitional games, in which players are assumed to face payoff uncertainty. Characteristic functions thus assign a closed interval, instead of a real number. In this paper, we first examine the notion of solution mapping, a solution concept applied to interval games, by comparing it with the existing solution concept called the interval solution concept. Then, we define a Shapley mapping as a specific form of the solution mapping. Finally, it is shown that the Shapley mapping can be characterized by two different axiomatizations, both of which employ interval game versions of standard axioms used in the traditional cooperative game analysis such as efficiency, symmetry, null player property, additivity and separability.
|