Summary: | Sarcasm is an integral part of human language and culture. Naturally, it has garnered great interest from researchers from varied fields of study, including Artificial Intelligence, especially Natural Language Processing. Automatic sarcasm detection has become an increasingly popular topic in the past decade. The research conducted in this paper presents, through a systematic literature review, the evolution of the automatic sarcasm detection task from its inception in 2010 to the present day. No such work has been conducted thus far and it is essential to establish the progress that researchers have made when tackling this task and, moving forward, what the trends are. This study finds that multi-modal approaches and transformer-based architectures have become increasingly popular in recent years. Additionally, this paper presents a critique of the work carried out so far and proposes future directions of research in the field.
|