Deep learning-aided high-precision data detection for massive MU-MIMO systems

The data detector for future wireless system needs to achieve high throughput and low bit error rate (BER) with low computational complexity. In this paper, we propose a deep neural networks (DNNs) learning aided iterative detection algorithm. We first propose a convex optimization-based method for...

Full description

Bibliographic Details
Main Authors: Yang Sen, Li Zerun, Wei Jinhui, Xing Zuocheng
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:MATEC Web of Conferences
Online Access:https://www.matec-conferences.org/articles/matecconf/pdf/2021/05/matecconf_cscns20_04007.pdf
Description
Summary:The data detector for future wireless system needs to achieve high throughput and low bit error rate (BER) with low computational complexity. In this paper, we propose a deep neural networks (DNNs) learning aided iterative detection algorithm. We first propose a convex optimization-based method for calculating the efficient detection of iterative soft output data, and then propose a method for adjusting the iteration parameters using the powerful data driven by DNNs, which achieves fast convergence and strong robustness. The results show that the proposed method can achieve the same performance as the known algorithm at a lower computation complexity cost.
ISSN:2261-236X