Using Artificial Intelligence to Obtain More Evidence? Prediction of Length of Hospitalization in Pediatric Burn Patients

Background: It is not only important for counseling purposes and for healthcare management. This study investigates the prediction accuracy of an artificial intelligence (AI)-based approach and a linear model. The heuristic expecting 1 day of stay per percentage of total body surface area (TBSA) ser...

Full description

Bibliographic Details
Main Authors: Julia Elrod, Christoph Mohr, Ruben Wolff, Michael Boettcher, Konrad Reinshagen, Pia Bartels, German Burn Registry, Ingo Koenigs
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-01-01
Series:Frontiers in Pediatrics
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fped.2020.613736/full
Description
Summary:Background: It is not only important for counseling purposes and for healthcare management. This study investigates the prediction accuracy of an artificial intelligence (AI)-based approach and a linear model. The heuristic expecting 1 day of stay per percentage of total body surface area (TBSA) serves as the performance benchmark.Methods: The study is based on pediatric burn patient's data sets from an international burn registry (N = 8,542). Mean absolute error and standard error are calculated for each prediction model (rule of thumb, linear regression, and random forest). Factors contributing to a prolonged stay and the relationship between TBSA and the residual error are analyzed.Results: The random forest-based approach and the linear model are statistically superior to the rule of thumb (p < 0.001, resp. p = 0.009). The residual error rises as TBSA increases for all methods. Factors associated with a prolonged LOS are particularly TBSA, depth of burn, and inhalation trauma.Conclusion: Applying AI-based algorithms to data from large international registries constitutes a promising tool for the purpose of prediction in medicine in the future; however, certain prerequisites concerning the underlying data sets and certain shortcomings must be considered.
ISSN:2296-2360