Existence of solutions for a nonlinear fractional order differential equation

Let $D^\alpha$ denote the Riemann-Liouville fractional differential operator of order $\alpha$. Let $1 < \alpha < 2$ and $0 < \beta < \alpha$. Define the operator $L$ by $L = D^\alpha - a D^\beta$ where $a \in \mathbb{R}$. We give sufficient conditions for the existence of solutions of t...

Full description

Bibliographic Details
Main Authors: E. Kaufmann, Kouadio D. Yao
Format: Article
Language:English
Published: University of Szeged 2009-12-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=458
_version_ 1797830726191677440
author E. Kaufmann
Kouadio D. Yao
author_facet E. Kaufmann
Kouadio D. Yao
author_sort E. Kaufmann
collection DOAJ
description Let $D^\alpha$ denote the Riemann-Liouville fractional differential operator of order $\alpha$. Let $1 < \alpha < 2$ and $0 < \beta < \alpha$. Define the operator $L$ by $L = D^\alpha - a D^\beta$ where $a \in \mathbb{R}$. We give sufficient conditions for the existence of solutions of the nonlinear fractional boundary value problem \begin{eqnarray*} &&Lu(t) + f(t, u(t)) = 0, \quad 0 < t < 1,\\ &&u(0) = 0, \, u(1)= 0. \end{eqnarray*}
first_indexed 2024-04-09T13:41:47Z
format Article
id doaj.art-93aa9de63a7946a59cf0c996b77a1269
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:41:47Z
publishDate 2009-12-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-93aa9de63a7946a59cf0c996b77a12692023-05-09T07:52:59ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752009-12-012009711910.14232/ejqtde.2009.1.71458Existence of solutions for a nonlinear fractional order differential equationE. Kaufmann0Kouadio D. Yao1University of Arkansas at Little Rock, Little Rock, AR, U.S.A.University of Arkansas at Little Rock, Little Rock, AR, U.S.A.Let $D^\alpha$ denote the Riemann-Liouville fractional differential operator of order $\alpha$. Let $1 < \alpha < 2$ and $0 < \beta < \alpha$. Define the operator $L$ by $L = D^\alpha - a D^\beta$ where $a \in \mathbb{R}$. We give sufficient conditions for the existence of solutions of the nonlinear fractional boundary value problem \begin{eqnarray*} &&Lu(t) + f(t, u(t)) = 0, \quad 0 < t < 1,\\ &&u(0) = 0, \, u(1)= 0. \end{eqnarray*}http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=458
spellingShingle E. Kaufmann
Kouadio D. Yao
Existence of solutions for a nonlinear fractional order differential equation
Electronic Journal of Qualitative Theory of Differential Equations
title Existence of solutions for a nonlinear fractional order differential equation
title_full Existence of solutions for a nonlinear fractional order differential equation
title_fullStr Existence of solutions for a nonlinear fractional order differential equation
title_full_unstemmed Existence of solutions for a nonlinear fractional order differential equation
title_short Existence of solutions for a nonlinear fractional order differential equation
title_sort existence of solutions for a nonlinear fractional order differential equation
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=458
work_keys_str_mv AT ekaufmann existenceofsolutionsforanonlinearfractionalorderdifferentialequation
AT kouadiodyao existenceofsolutionsforanonlinearfractionalorderdifferentialequation