A Modified Intuitionistic Fuzzy Clustering Algorithm for Medical Image Segmentation

This paper presents a modified intuitionistic fuzzy clustering (IFCM) algorithm for medical image segmentation. IFCM is a variant of the conventional fuzzy C-means (FCM) based on intuitionistic fuzzy set (IFS) theory. Unlike FCM, IFCM considers both membership and nonmembership values. The existing...

Full description

Bibliographic Details
Main Authors: Aruna Kumar S.V., Harish B.S.
Format: Article
Language:English
Published: De Gruyter 2018-10-01
Series:Journal of Intelligent Systems
Subjects:
Online Access:https://doi.org/10.1515/jisys-2016-0241
Description
Summary:This paper presents a modified intuitionistic fuzzy clustering (IFCM) algorithm for medical image segmentation. IFCM is a variant of the conventional fuzzy C-means (FCM) based on intuitionistic fuzzy set (IFS) theory. Unlike FCM, IFCM considers both membership and nonmembership values. The existing IFCM method uses Sugeno’s and Yager’s IFS generators to compute nonmembership value. But for certain parameters, IFS constructed using above complement generators does not satisfy the elementary condition of intuitionism. To overcome this problem, this paper adopts a new IFS generator. Further, Hausdorff distance is used as distance metric to calculate the distance between cluster center and pixel. Extensive experimentations are carried out on standard datasets like brain, lungs, liver and breast images. This paper compares the proposed method with other IFS based methods. The proposed algorithm satisfies the elementary condition of intuitionism. Further, this algorithm outperforms other methods with the use of various cluster validity functions.
ISSN:0334-1860
2191-026X