On Subadditivity of Functions on Positive Operators Without Operator Monotonicity and Convexity

‎‎‎‎In ‎this ‎paper, ‎we ‎investigate ‎the ‎subadditivity ‎of ‎functions ‎on positive ‎operators ‎without ‎operator ‎monotonicity ‎and ‎operator ‎convexity: Let ‎‎$‎A‎$ ‎and ‎$‎B‎$ ‎be positive operators on a Hilbert space ‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎$‎‎mathcal{H}‎$ ‎satisfying‎ ‎‎$‎0leq AB+BA‎$. Suppose tha...

Full description

Bibliographic Details
Main Author: ehsan anjidani
Format: Article
Language:fas
Published: Kharazmi University 2020-12-01
Series:پژوهش‌های ریاضی
Subjects:
Online Access:http://mmr.khu.ac.ir/article-1-2931-en.html
Description
Summary:‎‎‎‎In ‎this ‎paper, ‎we ‎investigate ‎the ‎subadditivity ‎of ‎functions ‎on positive ‎operators ‎without ‎operator ‎monotonicity ‎and ‎operator ‎convexity: Let ‎‎$‎A‎$ ‎and ‎$‎B‎$ ‎be positive operators on a Hilbert space ‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎$‎‎mathcal{H}‎$ ‎satisfying‎ ‎‎$‎0leq AB+BA‎$. Suppose that for the operator ‎‎‎‎$$‎E=(A+B)^{-frac{1}{2}}left(A^2+B^2right)(A+B)^‎{‎-frac{1}{2}}‎,$$‎‎ the open interval ‎$‎(m_E,M_E)‎$ where, ‎$‎m‎_E$ ‎and ‎‎$‎M_E‎$ ‎are ‎bounds ‎of ‎operator ‎‎$‎E‎$‎,‎ ‎does ‎not ‎intersect ‎the ‎spectrums ‎of ‎operators ‎‎$‎A‎$ ‎‎and ‎‎$‎B‎$‎.‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎ Then, for every continuous function ‎‎‎‎$‎g:(0,infty)‎rightarrow‎‎mathbb{R}^+‎$ ‎for ‎which ‎the function‎ ‎‎$‎f(t)=frac{g(t)}{t}‎$ is convex and decreasing, we have ‎‎‎ ‎‎$‎‎$‎g(A+B)leq c(m,M,f)(g(A)+g(B)),‎$‎‎$‎‎‎ where, ‎$‎m‎$ ‎and ‎‎$‎M‎$ ‎are ‎bounds ‎of ‎operator ‎‎$‎A+B‎$ ‎and‎‎‎‎‎ ‎‎$‎‎$‎‎c(m,M,f):=max_{mleq tleq M}left{frac{‎frac{f(M)-f(m)}{M-m}t+‎frac{Mf(m)-mf(M)}{M-m}}{f(t)‎}right}‎.‎$‎‎$‎./files/site1/files/64/3.pdf
ISSN:2588-2546
2588-2554