Summary: | Small-scale mining usually operates under high geological uncertainty conditions. This turns mine planning into a complex and sometimes inaccurate task, resulting in low productivity and substantial variability in the quantity and quality of the mineral products. This research demonstrates how the application of a novel methodology that relies on traditional and low-cost geophysical methods can contribute to mine planning in small-scale mining. A combination of resistivity and induced polarization methods is applied to enhance mine planning decision-making in three small-scale mining operations. This approach allows for the acquisition of new data regarding local geological settings, supporting geological modelling and enhancing decision-making processes for mine planning in a timely and low-cost fashion. The results indicate time savings of up to 77% and cost reductions of up to 94% as compared with conventional methods, contributing to more effective mine planning and, ultimately, improving sustainability in small-scale mining.
|