The Combination of Bioinformatics Analysis and Untargeted Metabolomics Reveals Potential Biomarkers and Key Metabolic Pathways in Asthma

Asthma is a complex chronic airway inflammatory disease that seriously impacts patients’ quality of life. As a novel approach to exploring the pathogenesis of diseases, metabolomics provides the potential to identify biomarkers of asthma host susceptibility and elucidate biological pathways. The aim...

Full description

Bibliographic Details
Main Authors: Fangfang Huang, Jinjin Yu, Tianwen Lai, Lianxiang Luo, Weizhen Zhang
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Metabolites
Subjects:
Online Access:https://www.mdpi.com/2218-1989/13/1/25
Description
Summary:Asthma is a complex chronic airway inflammatory disease that seriously impacts patients’ quality of life. As a novel approach to exploring the pathogenesis of diseases, metabolomics provides the potential to identify biomarkers of asthma host susceptibility and elucidate biological pathways. The aim of this study was to screen potential biomarkers and biological pathways so as to provide possible pharmacological therapeutic targets for asthma. In the present study, we merged the differentially expressed genes (DEGs) of asthma in the GEO database with the metabolic genes obtained by Genecard for bioinformatics analysis and successfully screened out the metabolism-related hub genes (HIF1A, OCRL, NNMT, and PER1). Then, untargeted metabolic techniques were utilized to reveal HDM-induced metabolite alterations in 16HBE cells. A total of 45 significant differential metabolites and 5 differential metabolic pathways between the control group and HDM group were identified based on the OPLS-DA model. Finally, three key metabolic pathways, including glycerophospholipid metabolism, galactose metabolism, and alanine, aspartate, and glutamate metabolism, were screened through the integrated analysis of bioinformatics data and untargeted metabolomics data. Taken together, these findings provide valuable insights into the pathophysiology and targeted therapy of asthma and lay a foundation for further research.
ISSN:2218-1989