DC-Programming versus ℓ0-Superiorization for Discrete Tomography

In this paper we focus on the reconstruction of sparse solutions to underdetermined systems of linear equations with variable bounds. The problem is motivated by sparse and gradient-sparse reconstruction in binary and discrete tomography from limited data. To address the ℓ0-minimization problem we c...

Full description

Bibliographic Details
Main Authors: Gibali Aviv, Petra Stefania
Format: Article
Language:English
Published: Sciendo 2018-07-01
Series:Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
Subjects:
Online Access:https://doi.org/10.2478/auom-2018-0021
Description
Summary:In this paper we focus on the reconstruction of sparse solutions to underdetermined systems of linear equations with variable bounds. The problem is motivated by sparse and gradient-sparse reconstruction in binary and discrete tomography from limited data. To address the ℓ0-minimization problem we consider two approaches: DC-programming and ℓ0-superiorization. We show that ℓ0-minimization over bounded polyhedra can be equivalently formulated as a DC program. Unfortunately, standard DC algorithms based on convex programming often get trapped in local minima. On the other hand, ℓ0-superiorization yields comparable results at significantly lower costs.
ISSN:1844-0835