Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning

Forecasting the state of health and remaining useful life of batteries is a challenge that limits technologies such as electric vehicles. Here, the authors build an accurate battery performance forecasting system using machine learning.

Bibliographic Details
Main Authors: Yunwei Zhang, Qiaochu Tang, Yao Zhang, Jiabin Wang, Ulrich Stimming, Alpha A. Lee
Format: Article
Language:English
Published: Nature Portfolio 2020-04-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-020-15235-7
_version_ 1819195817264676864
author Yunwei Zhang
Qiaochu Tang
Yao Zhang
Jiabin Wang
Ulrich Stimming
Alpha A. Lee
author_facet Yunwei Zhang
Qiaochu Tang
Yao Zhang
Jiabin Wang
Ulrich Stimming
Alpha A. Lee
author_sort Yunwei Zhang
collection DOAJ
description Forecasting the state of health and remaining useful life of batteries is a challenge that limits technologies such as electric vehicles. Here, the authors build an accurate battery performance forecasting system using machine learning.
first_indexed 2024-12-23T02:18:47Z
format Article
id doaj.art-93fa48473c6748549ce982ee1772b3cf
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-12-23T02:18:47Z
publishDate 2020-04-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-93fa48473c6748549ce982ee1772b3cf2022-12-21T18:03:35ZengNature PortfolioNature Communications2041-17232020-04-011111610.1038/s41467-020-15235-7Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learningYunwei Zhang0Qiaochu Tang1Yao Zhang2Jiabin Wang3Ulrich Stimming4Alpha A. Lee5Cavendish Laboratory, University of CambridgeThe Faraday InstitutionDepartment of Applied Mathematics and Theoretical Physics, University of CambridgeThe Faraday InstitutionThe Faraday InstitutionCavendish Laboratory, University of CambridgeForecasting the state of health and remaining useful life of batteries is a challenge that limits technologies such as electric vehicles. Here, the authors build an accurate battery performance forecasting system using machine learning.https://doi.org/10.1038/s41467-020-15235-7
spellingShingle Yunwei Zhang
Qiaochu Tang
Yao Zhang
Jiabin Wang
Ulrich Stimming
Alpha A. Lee
Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
Nature Communications
title Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
title_full Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
title_fullStr Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
title_full_unstemmed Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
title_short Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
title_sort identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
url https://doi.org/10.1038/s41467-020-15235-7
work_keys_str_mv AT yunweizhang identifyingdegradationpatternsoflithiumionbatteriesfromimpedancespectroscopyusingmachinelearning
AT qiaochutang identifyingdegradationpatternsoflithiumionbatteriesfromimpedancespectroscopyusingmachinelearning
AT yaozhang identifyingdegradationpatternsoflithiumionbatteriesfromimpedancespectroscopyusingmachinelearning
AT jiabinwang identifyingdegradationpatternsoflithiumionbatteriesfromimpedancespectroscopyusingmachinelearning
AT ulrichstimming identifyingdegradationpatternsoflithiumionbatteriesfromimpedancespectroscopyusingmachinelearning
AT alphaalee identifyingdegradationpatternsoflithiumionbatteriesfromimpedancespectroscopyusingmachinelearning