On the benefits of clustering approaches in digital soil mapping: an application example concerning soil texture regionalization
<p>High-resolution soil maps are urgently needed by land managers and researchers for a variety of applications. Digital soil mapping (DSM) allows us to regionalize soil properties by relating them to environmental covariates with the help of an empirical model. In this study, a legacy soil da...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2022-08-01
|
Series: | SOIL |
Online Access: | https://soil.copernicus.org/articles/8/541/2022/soil-8-541-2022.pdf |
_version_ | 1828433327459139584 |
---|---|
author | I. Dunkl I. Dunkl M. Ließ |
author_facet | I. Dunkl I. Dunkl M. Ließ |
author_sort | I. Dunkl |
collection | DOAJ |
description | <p>High-resolution soil maps are urgently needed by land managers and researchers for a variety of applications. Digital soil mapping (DSM) allows us to regionalize soil properties by relating them to environmental covariates with the help of an empirical model. In this study, a legacy soil dataset was used to train a machine learning algorithm in order to predict the particle size distribution within the catchment of the Bode River in Saxony-Anhalt (Germany). The random forest ensemble learning method was used to predict soil texture based on environmental covariates originating from a digital elevation model, land cover data and geologic maps. We studied the usefulness of clustering applications in addressing various aspects of the DSM procedure. To improve areal representativity of the legacy soil data in terms of spatial variability, the environmental covariates were used to cluster the landscape of the study area into spatial units for stratified random sampling. Different sampling strategies were used to create balanced training data and were evaluated on their ability to improve model performance. Clustering applications were also involved in feature selection and stratified cross-validation. Under the best-performing sampling strategy, the resulting models achieved an <span class="inline-formula"><i>R</i><sup>2</sup></span> of 0.29 to 0.50 in topsoils and 0.16–0.32 in deeper soil layers. Overall, clustering applications appear to be a versatile tool to be employed at various steps of the DSM procedure. Beyond their successful application, further application fields in DSM were identified. One of them is to find adequate means to include expert knowledge.</p> |
first_indexed | 2024-12-10T18:32:43Z |
format | Article |
id | doaj.art-93fb8abfe4aa4c6eb5afe71971b8d9cf |
institution | Directory Open Access Journal |
issn | 2199-3971 2199-398X |
language | English |
last_indexed | 2024-12-10T18:32:43Z |
publishDate | 2022-08-01 |
publisher | Copernicus Publications |
record_format | Article |
series | SOIL |
spelling | doaj.art-93fb8abfe4aa4c6eb5afe71971b8d9cf2022-12-22T01:37:53ZengCopernicus PublicationsSOIL2199-39712199-398X2022-08-01854155810.5194/soil-8-541-2022On the benefits of clustering approaches in digital soil mapping: an application example concerning soil texture regionalizationI. Dunkl0I. Dunkl1M. Ließ2Max Planck Institute for Meteorology, Hamburg, GermanyDepartment Soil System Science, Helmholtz Centre for Environmental Research – UFZ, Halle (Saale), GermanyDepartment Soil System Science, Helmholtz Centre for Environmental Research – UFZ, Halle (Saale), Germany<p>High-resolution soil maps are urgently needed by land managers and researchers for a variety of applications. Digital soil mapping (DSM) allows us to regionalize soil properties by relating them to environmental covariates with the help of an empirical model. In this study, a legacy soil dataset was used to train a machine learning algorithm in order to predict the particle size distribution within the catchment of the Bode River in Saxony-Anhalt (Germany). The random forest ensemble learning method was used to predict soil texture based on environmental covariates originating from a digital elevation model, land cover data and geologic maps. We studied the usefulness of clustering applications in addressing various aspects of the DSM procedure. To improve areal representativity of the legacy soil data in terms of spatial variability, the environmental covariates were used to cluster the landscape of the study area into spatial units for stratified random sampling. Different sampling strategies were used to create balanced training data and were evaluated on their ability to improve model performance. Clustering applications were also involved in feature selection and stratified cross-validation. Under the best-performing sampling strategy, the resulting models achieved an <span class="inline-formula"><i>R</i><sup>2</sup></span> of 0.29 to 0.50 in topsoils and 0.16–0.32 in deeper soil layers. Overall, clustering applications appear to be a versatile tool to be employed at various steps of the DSM procedure. Beyond their successful application, further application fields in DSM were identified. One of them is to find adequate means to include expert knowledge.</p>https://soil.copernicus.org/articles/8/541/2022/soil-8-541-2022.pdf |
spellingShingle | I. Dunkl I. Dunkl M. Ließ On the benefits of clustering approaches in digital soil mapping: an application example concerning soil texture regionalization SOIL |
title | On the benefits of clustering approaches in digital soil mapping: an application example concerning soil texture regionalization |
title_full | On the benefits of clustering approaches in digital soil mapping: an application example concerning soil texture regionalization |
title_fullStr | On the benefits of clustering approaches in digital soil mapping: an application example concerning soil texture regionalization |
title_full_unstemmed | On the benefits of clustering approaches in digital soil mapping: an application example concerning soil texture regionalization |
title_short | On the benefits of clustering approaches in digital soil mapping: an application example concerning soil texture regionalization |
title_sort | on the benefits of clustering approaches in digital soil mapping an application example concerning soil texture regionalization |
url | https://soil.copernicus.org/articles/8/541/2022/soil-8-541-2022.pdf |
work_keys_str_mv | AT idunkl onthebenefitsofclusteringapproachesindigitalsoilmappinganapplicationexampleconcerningsoiltextureregionalization AT idunkl onthebenefitsofclusteringapproachesindigitalsoilmappinganapplicationexampleconcerningsoiltextureregionalization AT mließ onthebenefitsofclusteringapproachesindigitalsoilmappinganapplicationexampleconcerningsoiltextureregionalization |