Enhanced PEGASIS using Dynamic Programming for Data Gathering in Wireless Sensor Network
A number of routing protocol algorithms such as Low-Energy Adaptive Clustering Hierarchy (LEACH) and Power-Efficient Gathering in Sensor Information Systems (PEGASIS) have been proposed to overcome the problem of energy consumption in Wireless Sensor Network (WSN) technology. PEGASIS is a developmen...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Politeknik Elektronika Negeri Surabaya
2019-06-01
|
Series: | Emitter: International Journal of Engineering Technology |
Subjects: | |
Online Access: | https://emitter.pens.ac.id/index.php/emitter/article/view/360 |
Summary: | A number of routing protocol algorithms such as Low-Energy Adaptive Clustering Hierarchy (LEACH) and Power-Efficient Gathering in Sensor Information Systems (PEGASIS) have been proposed to overcome the problem of energy consumption in Wireless Sensor Network (WSN) technology. PEGASIS is a development of the LEACH protocol, where within PEGASIS all nodes are active during data transfer rounds thus limiting the lifetime of the WSN. This study aims to propose improvements from the previous PEGASIS version by giving the name Enhanced PEGASIS using Dynamic Programming (EPDP). EPDP uses the Dominating Set (DS) concept in selecting a subset of nodes to be activated and using dynamic programming based optimization in forming chains from each node. There are 2 topology nodes that we use, namely random and static. Then for the Base Station (BS), it will also be divided into several scenarios, namely the BS is placed outside the network, in the corner of the network, and in the middle of the network. Whereas to determine the performance between EPDP, PEGASIS and LEACH, an analysis of the number of die nodes, number of alive nodes, and remaining of energy were analyzed. From the experiment result, it was found that the EPDP protocol had better performance compared to the LEACH and PEGASIS protocols in terms of number of die nodes, number of alive nodes, and remaining of energy. Whereas the best BS placement is in the middle of the network and uses static node distribution topologies to save more energy. |
---|---|
ISSN: | 2355-391X 2443-1168 |