Artificial neural network in the discrimination of lung cancer based on infrared spectroscopy.

Given the increasing prevalence of lung cancer worldwide, an auxiliary diagnostic method is needed alongside the microscopic examination of biopsy samples, which is dependent on the skills and experience of pathologists. Thus, this study aimed to advance lung cancer diagnosis by developing five (5)...

Full description

Bibliographic Details
Main Authors: Eiron John Lugtu, Denise Bernadette Ramos, Alliah Jen Agpalza, Erika Antoinette Cabral, Rian Paolo Carandang, Jennica Elia Dee, Angelica Martinez, Julius Eleazar Jose, Abegail Santillan, Ruth Bangaoil, Pia Marie Albano, Rock Christian Tomas
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2022-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0268329
Description
Summary:Given the increasing prevalence of lung cancer worldwide, an auxiliary diagnostic method is needed alongside the microscopic examination of biopsy samples, which is dependent on the skills and experience of pathologists. Thus, this study aimed to advance lung cancer diagnosis by developing five (5) artificial neural network (NN) models that can discriminate malignant from benign samples based on infrared spectral data of lung tumors (n = 122; 56 malignant, 66 benign). NNs were benchmarked with classical machine learning (CML) models. Stratified 10-fold cross-validation was performed to evaluate the NN models, and the performance metrics-area under the curve (AUC), accuracy (ACC) positive predictive value (PPV), negative predictive value (NPV), specificity rate (SR), and recall rate (RR)-were averaged for comparison. All NNs were able to outperform the CML models, however, support vector machine is relatively comparable to NNs. Among the NNs, CNN performed best with an AUC of 92.28% ± 7.36%, ACC of 98.45% ± 1.72%, PPV of 96.62% ± 2.30%, NPV of 90.50% ± 11.92%, SR of 96.01% ± 3.09%, and RR of 89.21% ± 12.93%. In conclusion, NNs can be potentially used as a computational tool in lung cancer diagnosis based on infrared spectroscopy of lung tissues.
ISSN:1932-6203