CloudAligner: A fast and full-featured MapReduce based tool for sequence mapping
<p>Abstract</p> <p>Background</p> <p>Research in genetics has developed rapidly recently due to the aid of next generation sequencing (NGS). However, massively-parallel NGS produces enormous amounts of data, which leads to storage, compatibility, scalability, and perfor...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2011-06-01
|
Series: | BMC Research Notes |
Online Access: | http://www.biomedcentral.com/1756-0500/4/171 |
_version_ | 1811264835237707776 |
---|---|
author | Shi Weisong Nguyen Tung Ruden Douglas |
author_facet | Shi Weisong Nguyen Tung Ruden Douglas |
author_sort | Shi Weisong |
collection | DOAJ |
description | <p>Abstract</p> <p>Background</p> <p>Research in genetics has developed rapidly recently due to the aid of next generation sequencing (NGS). However, massively-parallel NGS produces enormous amounts of data, which leads to storage, compatibility, scalability, and performance issues. The Cloud Computing and MapReduce framework, which utilizes hundreds or thousands of shared computers to map sequencing reads quickly and efficiently to reference genome sequences, appears to be a very promising solution for these issues. Consequently, it has been adopted by many organizations recently, and the initial results are very promising. However, since these are only initial steps toward this trend, the developed software does not provide adequate primary functions like bisulfite, pair-end mapping, etc., in on-site software such as RMAP or BS Seeker. In addition, existing MapReduce-based applications were not designed to process the long reads produced by the most recent second-generation and third-generation NGS instruments and, therefore, are inefficient. Last, it is difficult for a majority of biologists untrained in programming skills to use these tools because most were developed on Linux with a command line interface.</p> <p>Results</p> <p>To urge the trend of using Cloud technologies in genomics and prepare for advances in second- and third-generation DNA sequencing, we have built a Hadoop MapReduce-based application, CloudAligner, which achieves higher performance, covers most primary features, is more accurate, and has a user-friendly interface. It was also designed to be able to deal with long sequences. The performance gain of CloudAligner over Cloud-based counterparts (35 to 80%) mainly comes from the omission of the reduce phase. In comparison to local-based approaches, the performance gain of CloudAligner is from the partition and parallel processing of the huge reference genome as well as the reads. The source code of CloudAligner is available at <url>http://cloudaligner.sourceforge.net/</url> and its web version is at <url>http://mine.cs.wayne.edu:8080/CloudAligner/.</url></p> <p>Conclusions</p> <p>Our results show that CloudAligner is faster than CloudBurst, provides more accurate results than RMAP, and supports various input as well as output formats. In addition, with the web-based interface, it is easier to use than its counterparts.</p> |
first_indexed | 2024-04-12T20:13:02Z |
format | Article |
id | doaj.art-941008d6239f41fdb1a4e4b08be405f1 |
institution | Directory Open Access Journal |
issn | 1756-0500 |
language | English |
last_indexed | 2024-04-12T20:13:02Z |
publishDate | 2011-06-01 |
publisher | BMC |
record_format | Article |
series | BMC Research Notes |
spelling | doaj.art-941008d6239f41fdb1a4e4b08be405f12022-12-22T03:18:13ZengBMCBMC Research Notes1756-05002011-06-014117110.1186/1756-0500-4-171CloudAligner: A fast and full-featured MapReduce based tool for sequence mappingShi WeisongNguyen TungRuden Douglas<p>Abstract</p> <p>Background</p> <p>Research in genetics has developed rapidly recently due to the aid of next generation sequencing (NGS). However, massively-parallel NGS produces enormous amounts of data, which leads to storage, compatibility, scalability, and performance issues. The Cloud Computing and MapReduce framework, which utilizes hundreds or thousands of shared computers to map sequencing reads quickly and efficiently to reference genome sequences, appears to be a very promising solution for these issues. Consequently, it has been adopted by many organizations recently, and the initial results are very promising. However, since these are only initial steps toward this trend, the developed software does not provide adequate primary functions like bisulfite, pair-end mapping, etc., in on-site software such as RMAP or BS Seeker. In addition, existing MapReduce-based applications were not designed to process the long reads produced by the most recent second-generation and third-generation NGS instruments and, therefore, are inefficient. Last, it is difficult for a majority of biologists untrained in programming skills to use these tools because most were developed on Linux with a command line interface.</p> <p>Results</p> <p>To urge the trend of using Cloud technologies in genomics and prepare for advances in second- and third-generation DNA sequencing, we have built a Hadoop MapReduce-based application, CloudAligner, which achieves higher performance, covers most primary features, is more accurate, and has a user-friendly interface. It was also designed to be able to deal with long sequences. The performance gain of CloudAligner over Cloud-based counterparts (35 to 80%) mainly comes from the omission of the reduce phase. In comparison to local-based approaches, the performance gain of CloudAligner is from the partition and parallel processing of the huge reference genome as well as the reads. The source code of CloudAligner is available at <url>http://cloudaligner.sourceforge.net/</url> and its web version is at <url>http://mine.cs.wayne.edu:8080/CloudAligner/.</url></p> <p>Conclusions</p> <p>Our results show that CloudAligner is faster than CloudBurst, provides more accurate results than RMAP, and supports various input as well as output formats. In addition, with the web-based interface, it is easier to use than its counterparts.</p>http://www.biomedcentral.com/1756-0500/4/171 |
spellingShingle | Shi Weisong Nguyen Tung Ruden Douglas CloudAligner: A fast and full-featured MapReduce based tool for sequence mapping BMC Research Notes |
title | CloudAligner: A fast and full-featured MapReduce based tool for sequence mapping |
title_full | CloudAligner: A fast and full-featured MapReduce based tool for sequence mapping |
title_fullStr | CloudAligner: A fast and full-featured MapReduce based tool for sequence mapping |
title_full_unstemmed | CloudAligner: A fast and full-featured MapReduce based tool for sequence mapping |
title_short | CloudAligner: A fast and full-featured MapReduce based tool for sequence mapping |
title_sort | cloudaligner a fast and full featured mapreduce based tool for sequence mapping |
url | http://www.biomedcentral.com/1756-0500/4/171 |
work_keys_str_mv | AT shiweisong cloudalignerafastandfullfeaturedmapreducebasedtoolforsequencemapping AT nguyentung cloudalignerafastandfullfeaturedmapreducebasedtoolforsequencemapping AT rudendouglas cloudalignerafastandfullfeaturedmapreducebasedtoolforsequencemapping |