Moschus exerted protective activity against H2O2-induced cell injury in PC12 cells through regulating Nrf-2/ARE signaling pathways

The pivotal characteristics of Alzheimer's disease (AD) are irreversible memory loss and progressive cognitive decline, eventually causing death from brain failure. In the various proposed hypotheses of AD, oxidative stress is also regarded as a symbolic pathophysiologic cascade contributing to...

Full description

Bibliographic Details
Main Authors: Danni Xie, Ting Deng, Zhenwei Zhai, Tao Qin, Caiyou Song, Ying Xu, Tao Sun
Format: Article
Language:English
Published: Elsevier 2023-03-01
Series:Biomedicine & Pharmacotherapy
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0753332223000781
Description
Summary:The pivotal characteristics of Alzheimer's disease (AD) are irreversible memory loss and progressive cognitive decline, eventually causing death from brain failure. In the various proposed hypotheses of AD, oxidative stress is also regarded as a symbolic pathophysiologic cascade contributing to brain diseases. Using Chinese herbal medicine may be beneficial for treating and preventing AD. As a rare and valuable animal medicine, Moschus possesses antioxidant and antiapoptotic efficacy and is extensively applied for treating unconsciousness, stroke, coma, and cerebrovascular diseases. We aim to evaluate whether Moschus protects PC12 cells from hydrogen peroxide (H2O2)-induced cellular injury. The chemical constituents of Moschus are analyzed by GC-MS assay. The cell viability, reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP) levels, oxidative stress-related indicators, and apoptotic proteins are determined. Through GC-MS analysis, nineteen active contents were identified. The cell viability loss, lactate dehydrogenase releases, MMP levels, ROS productions, and Malondialdehyde (MDA) activities decreased, and BAX, Caspase-3, and Kelch-like ECH-associated protein 1 expression also significantly down-regulated and heme oxygenase 1, nuclear factor erythroid-2-related factor 2 (Nrf-2), and quinine oxidoreductase 1 expression upregulated after pretreatment of Moschus. The result indicated Moschus has neuroprotective activity in relieving H2O2-induced cellular damage, and the potential mechanism might be associated with regulating the Nrf-2/ARE signaling pathway. A more in-depth and comprehensive understanding of Moschus in the pathogenesis of AD will provide a fundamental basis for in vivo AD animal model research, which may be able to provide further insights and new targets for AD therapy.
ISSN:0753-3322