THE BERNSTEIN CENTER OF THE CATEGORY OF SMOOTH $W(k)[\text{GL}_{n}(F)]$ -MODULES

We consider the category of smooth $W(k)[\text{GL}_{n}(F)]$ -modules, where $F$ is a...

Full description

Bibliographic Details
Main Author: DAVID HELM
Format: Article
Language:English
Published: Cambridge University Press 2016-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509416000104/type/journal_article
_version_ 1827994914506407936
author DAVID HELM
author_facet DAVID HELM
author_sort DAVID HELM
collection DOAJ
description We consider the category of smooth $W(k)[\text{GL}_{n}(F)]$ -modules, where $F$ is a $p$ -adic field and $k$ is an algebraically closed field of characteristic $\ell$ different from  $p$ . We describe a factorization of this category into blocks, and show that the center of each such block is a reduced, $\ell$ -torsion free, finite type $W(k)$ -algebra. Moreover, the $k$ -points of the center of a such a block are in bijection with the possible ‘supercuspidal supports’ of the smooth $k[\text{GL}_{n}(F)]$ -modules that lie in the block. Finally, we describe a large explicit subalgebra of the center of each block and give a description of the action of this algebra on the simple objects of the block, in terms of the description of the classical ‘characteristic zero’ Bernstein center of Bernstein and Deligne [Le ‘centre’ de Bernstein, in Representations des groups redutifs sur un corps local, Traveaux en cours (ed. P. Deligne) (Hermann, Paris), 1–32].
first_indexed 2024-04-10T04:47:19Z
format Article
id doaj.art-9415569f51174e628d23132741650d2e
institution Directory Open Access Journal
issn 2050-5094
language English
last_indexed 2024-04-10T04:47:19Z
publishDate 2016-01-01
publisher Cambridge University Press
record_format Article
series Forum of Mathematics, Sigma
spelling doaj.art-9415569f51174e628d23132741650d2e2023-03-09T12:34:41ZengCambridge University PressForum of Mathematics, Sigma2050-50942016-01-01410.1017/fms.2016.10THE BERNSTEIN CENTER OF THE CATEGORY OF SMOOTH $W(k)[\text{GL}_{n}(F)]$ -MODULESDAVID HELM0Department of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK;We consider the category of smooth $W(k)[\text{GL}_{n}(F)]$ -modules, where $F$ is a $p$ -adic field and $k$ is an algebraically closed field of characteristic $\ell$ different from  $p$ . We describe a factorization of this category into blocks, and show that the center of each such block is a reduced, $\ell$ -torsion free, finite type $W(k)$ -algebra. Moreover, the $k$ -points of the center of a such a block are in bijection with the possible ‘supercuspidal supports’ of the smooth $k[\text{GL}_{n}(F)]$ -modules that lie in the block. Finally, we describe a large explicit subalgebra of the center of each block and give a description of the action of this algebra on the simple objects of the block, in terms of the description of the classical ‘characteristic zero’ Bernstein center of Bernstein and Deligne [Le ‘centre’ de Bernstein, in Representations des groups redutifs sur un corps local, Traveaux en cours (ed. P. Deligne) (Hermann, Paris), 1–32].https://www.cambridge.org/core/product/identifier/S2050509416000104/type/journal_article11F3311F70 (primary)22E50 (secondary)
spellingShingle DAVID HELM
THE BERNSTEIN CENTER OF THE CATEGORY OF SMOOTH $W(k)[\text{GL}_{n}(F)]$ -MODULES
Forum of Mathematics, Sigma
11F33
11F70 (primary)
22E50 (secondary)
title THE BERNSTEIN CENTER OF THE CATEGORY OF SMOOTH $W(k)[\text{GL}_{n}(F)]$ -MODULES
title_full THE BERNSTEIN CENTER OF THE CATEGORY OF SMOOTH $W(k)[\text{GL}_{n}(F)]$ -MODULES
title_fullStr THE BERNSTEIN CENTER OF THE CATEGORY OF SMOOTH $W(k)[\text{GL}_{n}(F)]$ -MODULES
title_full_unstemmed THE BERNSTEIN CENTER OF THE CATEGORY OF SMOOTH $W(k)[\text{GL}_{n}(F)]$ -MODULES
title_short THE BERNSTEIN CENTER OF THE CATEGORY OF SMOOTH $W(k)[\text{GL}_{n}(F)]$ -MODULES
title_sort bernstein center of the category of smooth w k text gl n f modules
topic 11F33
11F70 (primary)
22E50 (secondary)
url https://www.cambridge.org/core/product/identifier/S2050509416000104/type/journal_article
work_keys_str_mv AT davidhelm thebernsteincenterofthecategoryofsmoothwktextglnfmodules
AT davidhelm bernsteincenterofthecategoryofsmoothwktextglnfmodules