A Maximum Entropy Modelling of the Rain Drop Size Distribution

This paper presents a maximum entropy approach to Rain Drop Size Distribution (RDSD) modelling. It is shown that this approach allows (1) to use a physically consistent rationale to select a particular probability density function (pdf) (2) to provide an alternative method for parameter estimation b...

Full description

Bibliographic Details
Main Authors: Francisco J. Tapiador, Ramiro Checa
Format: Article
Language:English
Published: MDPI AG 2011-01-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/13/2/293/
_version_ 1811306269318840320
author Francisco J. Tapiador
Ramiro Checa
author_facet Francisco J. Tapiador
Ramiro Checa
author_sort Francisco J. Tapiador
collection DOAJ
description This paper presents a maximum entropy approach to Rain Drop Size Distribution (RDSD) modelling. It is shown that this approach allows (1) to use a physically consistent rationale to select a particular probability density function (pdf) (2) to provide an alternative method for parameter estimation based on expectations of the population instead of sample moments and (3) to develop a progressive method of modelling by updating the pdf as new empirical information becomes available. The method is illustrated with both synthetic and real RDSD data, the latest coming from a laser disdrometer network specifically designed to measure the spatial variability of the RDSD.
first_indexed 2024-04-13T08:42:22Z
format Article
id doaj.art-941b2ca0baeb4608bcc470e1d3eec294
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-04-13T08:42:22Z
publishDate 2011-01-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-941b2ca0baeb4608bcc470e1d3eec2942022-12-22T02:53:52ZengMDPI AGEntropy1099-43002011-01-0113229331510.3390/e13020293A Maximum Entropy Modelling of the Rain Drop Size DistributionFrancisco J. TapiadorRamiro ChecaThis paper presents a maximum entropy approach to Rain Drop Size Distribution (RDSD) modelling. It is shown that this approach allows (1) to use a physically consistent rationale to select a particular probability density function (pdf) (2) to provide an alternative method for parameter estimation based on expectations of the population instead of sample moments and (3) to develop a progressive method of modelling by updating the pdf as new empirical information becomes available. The method is illustrated with both synthetic and real RDSD data, the latest coming from a laser disdrometer network specifically designed to measure the spatial variability of the RDSD.http://www.mdpi.com/1099-4300/13/2/293/rain drop size distributionmaximum entropy method
spellingShingle Francisco J. Tapiador
Ramiro Checa
A Maximum Entropy Modelling of the Rain Drop Size Distribution
Entropy
rain drop size distribution
maximum entropy method
title A Maximum Entropy Modelling of the Rain Drop Size Distribution
title_full A Maximum Entropy Modelling of the Rain Drop Size Distribution
title_fullStr A Maximum Entropy Modelling of the Rain Drop Size Distribution
title_full_unstemmed A Maximum Entropy Modelling of the Rain Drop Size Distribution
title_short A Maximum Entropy Modelling of the Rain Drop Size Distribution
title_sort maximum entropy modelling of the rain drop size distribution
topic rain drop size distribution
maximum entropy method
url http://www.mdpi.com/1099-4300/13/2/293/
work_keys_str_mv AT franciscojtapiador amaximumentropymodellingoftheraindropsizedistribution
AT ramirocheca amaximumentropymodellingoftheraindropsizedistribution
AT franciscojtapiador maximumentropymodellingoftheraindropsizedistribution
AT ramirocheca maximumentropymodellingoftheraindropsizedistribution