Proton–proton fusion in lattice effective field theory

The proton–proton fusion rate is calculated at low energy in a lattice effective field theory (EFT) formulation. The strong and the Coulomb interactions are treated non-perturbatively at leading order in the EFT. The lattice results are shown to accurately describe the low energy cross section withi...

Full description

Bibliographic Details
Main Authors: Gautam Rupak, Pranaam Ravi
Format: Article
Language:English
Published: Elsevier 2015-02-01
Series:Physics Letters B
Online Access:http://www.sciencedirect.com/science/article/pii/S0370269314009368
Description
Summary:The proton–proton fusion rate is calculated at low energy in a lattice effective field theory (EFT) formulation. The strong and the Coulomb interactions are treated non-perturbatively at leading order in the EFT. The lattice results are shown to accurately describe the low energy cross section within the validity of the theory at energies relevant to solar physics. In prior works in the literature, Coulomb effects were generally not included in non-perturbative lattice calculations. Work presented here is of general interest in nuclear lattice EFT calculations that involve Coulomb effects at low energy. It complements recent developments of the adiabatic projection method for lattice calculations of nuclear reactions.
ISSN:0370-2693