FFT-Based Simultaneous Calculations of Very Long Signal Multi-Resolution Spectra for Ultra-Wideband Digital Radio Frequency Receiver and Other Digital Sensor Applications

The discrete Fourier transform (DFT) is the most commonly used signal processing method in modern digital sensor design for signal study and analysis. It is often implemented in hardware, such as a field programmable gate array (FPGA), using the fast Fourier transform (FFT) algorithm. The frequency...

Full description

Bibliographic Details
Main Authors: Chen Wu, Michael Low
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/24/4/1207
_version_ 1797297015841882112
author Chen Wu
Michael Low
author_facet Chen Wu
Michael Low
author_sort Chen Wu
collection DOAJ
description The discrete Fourier transform (DFT) is the most commonly used signal processing method in modern digital sensor design for signal study and analysis. It is often implemented in hardware, such as a field programmable gate array (FPGA), using the fast Fourier transform (FFT) algorithm. The frequency resolution (i.e., frequency bin size) is determined by the number of time samples used in the DFT, when the digital sensor’s bandwidth is fixed. One can vary the sensitivity of a radio frequency receiver by changing the number of time samples used in the DFT. As the number of samples increases, the frequency bin width decreases, and the digital receiver sensitivity increases. In some applications, it is useful to compute an ensemble of FFT lengths; e.g., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>2</mn><mrow><mi>P</mi><mo>−</mo><mi>j</mi></mrow></msup></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>j</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>,</mo><mo> </mo><mo>…</mo><mo>,</mo><mo> </mo><mi>J</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>j</mi></semantics></math></inline-formula> is defined as the spectrum level with frequency resolution <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><msup><mn>2</mn><mi>j</mi></msup><mo>·</mo><mo>Δ</mo><mi>f</mi></mrow></semantics></math></inline-formula>. Here <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><mi>f</mi></mrow></semantics></math></inline-formula> is the frequency resolution at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>. However, calculating all of these spectra one by one using the conventional FFT method would be prohibitively time-consuming, even on a modern FPGA. This is especially true for large values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>P</mi></semantics></math></inline-formula>; e.g., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>≥</mo><mn>20</mn></mrow></semantics></math></inline-formula>. The goal of this communication is to introduce a new method that can produce multi-resolution spectrum lines corresponding to sample lengths <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><msup><mn>2</mn><mrow><mi>P</mi><mo>−</mo><mi>j</mi></mrow></msup></mrow></semantics></math></inline-formula> for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>J</mi><mo>+</mo><mn>1</mn></mrow></semantics></math></inline-formula> levels, concurrently, while one long <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>2</mn><mi>P</mi></msup></mrow></semantics></math></inline-formula>-length FFT is being calculated. That is, the lower resolution spectra are generated naturally as by-products during the computation of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>2</mn><mi>P</mi></msup></mrow></semantics></math></inline-formula>-length FFT, so there is no need to perform additional calculations in order to obtain them.
first_indexed 2024-03-07T22:15:07Z
format Article
id doaj.art-941f85426f40477abdf833a1cf4b4331
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-07T22:15:07Z
publishDate 2024-02-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-941f85426f40477abdf833a1cf4b43312024-02-23T15:33:50ZengMDPI AGSensors1424-82202024-02-01244120710.3390/s24041207FFT-Based Simultaneous Calculations of Very Long Signal Multi-Resolution Spectra for Ultra-Wideband Digital Radio Frequency Receiver and Other Digital Sensor ApplicationsChen Wu0Michael Low1Defence Research and Development Canada—Ottawa Research Centre, Ottawa, ON K1A 0Z4, CanadaDefence Research and Development Canada—Ottawa Research Centre, Ottawa, ON K1A 0Z4, CanadaThe discrete Fourier transform (DFT) is the most commonly used signal processing method in modern digital sensor design for signal study and analysis. It is often implemented in hardware, such as a field programmable gate array (FPGA), using the fast Fourier transform (FFT) algorithm. The frequency resolution (i.e., frequency bin size) is determined by the number of time samples used in the DFT, when the digital sensor’s bandwidth is fixed. One can vary the sensitivity of a radio frequency receiver by changing the number of time samples used in the DFT. As the number of samples increases, the frequency bin width decreases, and the digital receiver sensitivity increases. In some applications, it is useful to compute an ensemble of FFT lengths; e.g., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>2</mn><mrow><mi>P</mi><mo>−</mo><mi>j</mi></mrow></msup></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>j</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>,</mo><mo> </mo><mo>…</mo><mo>,</mo><mo> </mo><mi>J</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>j</mi></semantics></math></inline-formula> is defined as the spectrum level with frequency resolution <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><msup><mn>2</mn><mi>j</mi></msup><mo>·</mo><mo>Δ</mo><mi>f</mi></mrow></semantics></math></inline-formula>. Here <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><mi>f</mi></mrow></semantics></math></inline-formula> is the frequency resolution at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>. However, calculating all of these spectra one by one using the conventional FFT method would be prohibitively time-consuming, even on a modern FPGA. This is especially true for large values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>P</mi></semantics></math></inline-formula>; e.g., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>≥</mo><mn>20</mn></mrow></semantics></math></inline-formula>. The goal of this communication is to introduce a new method that can produce multi-resolution spectrum lines corresponding to sample lengths <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><msup><mn>2</mn><mrow><mi>P</mi><mo>−</mo><mi>j</mi></mrow></msup></mrow></semantics></math></inline-formula> for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>J</mi><mo>+</mo><mn>1</mn></mrow></semantics></math></inline-formula> levels, concurrently, while one long <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>2</mn><mi>P</mi></msup></mrow></semantics></math></inline-formula>-length FFT is being calculated. That is, the lower resolution spectra are generated naturally as by-products during the computation of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>2</mn><mi>P</mi></msup></mrow></semantics></math></inline-formula>-length FFT, so there is no need to perform additional calculations in order to obtain them.https://www.mdpi.com/1424-8220/24/4/1207digital receiverdiscrete Fourier transformfast Fourier transformmulti-resolution spectrumblocking fast Fourier transformsignal processing
spellingShingle Chen Wu
Michael Low
FFT-Based Simultaneous Calculations of Very Long Signal Multi-Resolution Spectra for Ultra-Wideband Digital Radio Frequency Receiver and Other Digital Sensor Applications
Sensors
digital receiver
discrete Fourier transform
fast Fourier transform
multi-resolution spectrum
blocking fast Fourier transform
signal processing
title FFT-Based Simultaneous Calculations of Very Long Signal Multi-Resolution Spectra for Ultra-Wideband Digital Radio Frequency Receiver and Other Digital Sensor Applications
title_full FFT-Based Simultaneous Calculations of Very Long Signal Multi-Resolution Spectra for Ultra-Wideband Digital Radio Frequency Receiver and Other Digital Sensor Applications
title_fullStr FFT-Based Simultaneous Calculations of Very Long Signal Multi-Resolution Spectra for Ultra-Wideband Digital Radio Frequency Receiver and Other Digital Sensor Applications
title_full_unstemmed FFT-Based Simultaneous Calculations of Very Long Signal Multi-Resolution Spectra for Ultra-Wideband Digital Radio Frequency Receiver and Other Digital Sensor Applications
title_short FFT-Based Simultaneous Calculations of Very Long Signal Multi-Resolution Spectra for Ultra-Wideband Digital Radio Frequency Receiver and Other Digital Sensor Applications
title_sort fft based simultaneous calculations of very long signal multi resolution spectra for ultra wideband digital radio frequency receiver and other digital sensor applications
topic digital receiver
discrete Fourier transform
fast Fourier transform
multi-resolution spectrum
blocking fast Fourier transform
signal processing
url https://www.mdpi.com/1424-8220/24/4/1207
work_keys_str_mv AT chenwu fftbasedsimultaneouscalculationsofverylongsignalmultiresolutionspectraforultrawidebanddigitalradiofrequencyreceiverandotherdigitalsensorapplications
AT michaellow fftbasedsimultaneouscalculationsofverylongsignalmultiresolutionspectraforultrawidebanddigitalradiofrequencyreceiverandotherdigitalsensorapplications