Effect of Ultrasonic Vibration on Adhesive Bonding of CFRP/Al Alloy Joints Grafted with Silane Coupling Agent
Adhesive bonding is widely used in the joining of metals and carbon fiber-reinforced plastics (CFRPs). Ultrasonic vibration was used to improve adhesive bonding of CFRP/Al alloy joints grafted with silane coupling agent, and the effect of the ultrasound on the bonding was studied. The surface of Al...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-04-01
|
Series: | Polymers |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4360/12/4/947 |
_version_ | 1797570258298470400 |
---|---|
author | Min Wu Xuetong Tong Hui Wang Lin Hua Yizhe Chen |
author_facet | Min Wu Xuetong Tong Hui Wang Lin Hua Yizhe Chen |
author_sort | Min Wu |
collection | DOAJ |
description | Adhesive bonding is widely used in the joining of metals and carbon fiber-reinforced plastics (CFRPs). Ultrasonic vibration was used to improve adhesive bonding of CFRP/Al alloy joints grafted with silane coupling agent, and the effect of the ultrasound on the bonding was studied. The surface of Al alloy was treated with a silane coupling agent, and then the ultrasonic vibration was applied on the adherend during the adhesive bonding process. The shear strength was tested, and the mechanism was analyzed by scanning electron microscope (SEM) and Fourier transform infrared spectrometer (FTIR). It is found that the ultrasonic assisting can further promote the bonding of the Al alloy and the adhesive. For the test joins, the shear strength was increased by 267.50% using the silanization treatment plus the ultrasonic assisting. The ultrasonic assisting promoted the grafted epoxy group to react with the adhesive more sufficiently at the Al/adhesive interface by causing micro-mixing and intensified molecule collision, and thus more chemical bond was formed. Under the ultrasonic action, the interface and the adhesive layer became tighter owing to the impact contact at the interface and the oscillating flow in the adhesive layer. The ultrasonic vibration assisting increased the bonding strength by promoting the chemical bond and improving physical morphology. |
first_indexed | 2024-03-10T20:22:20Z |
format | Article |
id | doaj.art-942434b572f3433fa1c752032a0586b1 |
institution | Directory Open Access Journal |
issn | 2073-4360 |
language | English |
last_indexed | 2024-03-10T20:22:20Z |
publishDate | 2020-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Polymers |
spelling | doaj.art-942434b572f3433fa1c752032a0586b12023-11-19T22:04:53ZengMDPI AGPolymers2073-43602020-04-0112494710.3390/polym12040947Effect of Ultrasonic Vibration on Adhesive Bonding of CFRP/Al Alloy Joints Grafted with Silane Coupling AgentMin Wu0Xuetong Tong1Hui Wang2Lin Hua3Yizhe Chen4Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, ChinaHubei Collaborative Innovation Center for Automotive Components Technology, Wuhan 430070, ChinaHubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, ChinaHubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, ChinaHubei Research Center for New Energy & Intelligent Connected Vehicle, Wuhan University of Technology, Wuhan 430070, ChinaAdhesive bonding is widely used in the joining of metals and carbon fiber-reinforced plastics (CFRPs). Ultrasonic vibration was used to improve adhesive bonding of CFRP/Al alloy joints grafted with silane coupling agent, and the effect of the ultrasound on the bonding was studied. The surface of Al alloy was treated with a silane coupling agent, and then the ultrasonic vibration was applied on the adherend during the adhesive bonding process. The shear strength was tested, and the mechanism was analyzed by scanning electron microscope (SEM) and Fourier transform infrared spectrometer (FTIR). It is found that the ultrasonic assisting can further promote the bonding of the Al alloy and the adhesive. For the test joins, the shear strength was increased by 267.50% using the silanization treatment plus the ultrasonic assisting. The ultrasonic assisting promoted the grafted epoxy group to react with the adhesive more sufficiently at the Al/adhesive interface by causing micro-mixing and intensified molecule collision, and thus more chemical bond was formed. Under the ultrasonic action, the interface and the adhesive layer became tighter owing to the impact contact at the interface and the oscillating flow in the adhesive layer. The ultrasonic vibration assisting increased the bonding strength by promoting the chemical bond and improving physical morphology.https://www.mdpi.com/2073-4360/12/4/947ultrasonic vibrationadhesive bondingstrengthengraftmechanism |
spellingShingle | Min Wu Xuetong Tong Hui Wang Lin Hua Yizhe Chen Effect of Ultrasonic Vibration on Adhesive Bonding of CFRP/Al Alloy Joints Grafted with Silane Coupling Agent Polymers ultrasonic vibration adhesive bonding strengthen graft mechanism |
title | Effect of Ultrasonic Vibration on Adhesive Bonding of CFRP/Al Alloy Joints Grafted with Silane Coupling Agent |
title_full | Effect of Ultrasonic Vibration on Adhesive Bonding of CFRP/Al Alloy Joints Grafted with Silane Coupling Agent |
title_fullStr | Effect of Ultrasonic Vibration on Adhesive Bonding of CFRP/Al Alloy Joints Grafted with Silane Coupling Agent |
title_full_unstemmed | Effect of Ultrasonic Vibration on Adhesive Bonding of CFRP/Al Alloy Joints Grafted with Silane Coupling Agent |
title_short | Effect of Ultrasonic Vibration on Adhesive Bonding of CFRP/Al Alloy Joints Grafted with Silane Coupling Agent |
title_sort | effect of ultrasonic vibration on adhesive bonding of cfrp al alloy joints grafted with silane coupling agent |
topic | ultrasonic vibration adhesive bonding strengthen graft mechanism |
url | https://www.mdpi.com/2073-4360/12/4/947 |
work_keys_str_mv | AT minwu effectofultrasonicvibrationonadhesivebondingofcfrpalalloyjointsgraftedwithsilanecouplingagent AT xuetongtong effectofultrasonicvibrationonadhesivebondingofcfrpalalloyjointsgraftedwithsilanecouplingagent AT huiwang effectofultrasonicvibrationonadhesivebondingofcfrpalalloyjointsgraftedwithsilanecouplingagent AT linhua effectofultrasonicvibrationonadhesivebondingofcfrpalalloyjointsgraftedwithsilanecouplingagent AT yizhechen effectofultrasonicvibrationonadhesivebondingofcfrpalalloyjointsgraftedwithsilanecouplingagent |