Computation of Total Vertex Irregularity Strength of Theta Graphs

A total labeling <inline-formula> <tex-math notation="LaTeX">$\phi: V(G)\cup E(G) \to \{1,2, {\dots }, k\}$ </tex-math></inline-formula> is called a <italic>vertex irregular total</italic> <inline-formula> <tex-math notation="LaTeX">...

Full description

Bibliographic Details
Main Authors: Ali N. A. Koam, Ali Ahmad
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8786105/
_version_ 1818479901300228096
author Ali N. A. Koam
Ali Ahmad
author_facet Ali N. A. Koam
Ali Ahmad
author_sort Ali N. A. Koam
collection DOAJ
description A total labeling <inline-formula> <tex-math notation="LaTeX">$\phi: V(G)\cup E(G) \to \{1,2, {\dots }, k\}$ </tex-math></inline-formula> is called a <italic>vertex irregular total</italic> <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula><italic>-labeling</italic> of a graph <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> if different vertices in <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> have different weights. The weight of a vertex is defined as the sum of the labels of its incident edges and the label of that vertex. The minimum <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> for which the graph <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> has a vertex irregular total <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-labeling is called the <italic>total vertex irregularity strength</italic> of <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula>, denoted by <inline-formula> <tex-math notation="LaTeX">$tvs(G)$ </tex-math></inline-formula>. In this paper we deal with the total vertex irregularity strength of uniform theta graphs and centralized uniform theta graphs. Theta graph is a closer representation of bipolar electric or magnetic fields so labeling of various theta graphs can help the law of physics in future.
first_indexed 2024-12-10T11:16:13Z
format Article
id doaj.art-942b276c9d914ea798c349235ac427af
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-12-10T11:16:13Z
publishDate 2019-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-942b276c9d914ea798c349235ac427af2022-12-22T01:51:09ZengIEEEIEEE Access2169-35362019-01-01711382611383110.1109/ACCESS.2019.29326758786105Computation of Total Vertex Irregularity Strength of Theta GraphsAli N. A. Koam0Ali Ahmad1https://orcid.org/0000-0003-3434-9908Department of Mathematics, College of Science, Jazan University, Jazan, Saudi ArabiaCollege of Computer Science and Information Technology, Jazan University, Jazan, Saudi ArabiaA total labeling <inline-formula> <tex-math notation="LaTeX">$\phi: V(G)\cup E(G) \to \{1,2, {\dots }, k\}$ </tex-math></inline-formula> is called a <italic>vertex irregular total</italic> <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula><italic>-labeling</italic> of a graph <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> if different vertices in <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> have different weights. The weight of a vertex is defined as the sum of the labels of its incident edges and the label of that vertex. The minimum <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> for which the graph <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> has a vertex irregular total <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-labeling is called the <italic>total vertex irregularity strength</italic> of <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula>, denoted by <inline-formula> <tex-math notation="LaTeX">$tvs(G)$ </tex-math></inline-formula>. In this paper we deal with the total vertex irregularity strength of uniform theta graphs and centralized uniform theta graphs. Theta graph is a closer representation of bipolar electric or magnetic fields so labeling of various theta graphs can help the law of physics in future.https://ieeexplore.ieee.org/document/8786105/Total vertex irregularity strengththeta graphscentralized uniform theta graphs
spellingShingle Ali N. A. Koam
Ali Ahmad
Computation of Total Vertex Irregularity Strength of Theta Graphs
IEEE Access
Total vertex irregularity strength
theta graphs
centralized uniform theta graphs
title Computation of Total Vertex Irregularity Strength of Theta Graphs
title_full Computation of Total Vertex Irregularity Strength of Theta Graphs
title_fullStr Computation of Total Vertex Irregularity Strength of Theta Graphs
title_full_unstemmed Computation of Total Vertex Irregularity Strength of Theta Graphs
title_short Computation of Total Vertex Irregularity Strength of Theta Graphs
title_sort computation of total vertex irregularity strength of theta graphs
topic Total vertex irregularity strength
theta graphs
centralized uniform theta graphs
url https://ieeexplore.ieee.org/document/8786105/
work_keys_str_mv AT alinakoam computationoftotalvertexirregularitystrengthofthetagraphs
AT aliahmad computationoftotalvertexirregularitystrengthofthetagraphs