On the hydrostatic approximation of compressible anisotropic Navier–Stokes equations

In this work, we obtain the hydrostatic approximation by taking the small aspect ratio limit to the Navier–Stokes equations. The aspect ratio (the ratio of the depth to horizontal width) is a geometrical constraint in general large scale motions meaning that the vertical scale is significantly small...

Full description

Bibliographic Details
Main Authors: Gao, Hongjun, Nečasová, Šárka, Tang, Tong
Format: Article
Language:English
Published: Académie des sciences 2021-08-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.186/
_version_ 1797651551841419264
author Gao, Hongjun
Nečasová, Šárka
Tang, Tong
author_facet Gao, Hongjun
Nečasová, Šárka
Tang, Tong
author_sort Gao, Hongjun
collection DOAJ
description In this work, we obtain the hydrostatic approximation by taking the small aspect ratio limit to the Navier–Stokes equations. The aspect ratio (the ratio of the depth to horizontal width) is a geometrical constraint in general large scale motions meaning that the vertical scale is significantly smaller than horizontal. We use the versatile relative entropy inequality to prove rigorously the limit from the compressible Navier–Stokes equations to the compressible Primitive Equations. This is the first work to use relative entropy inequality for proving hydrostatic approximation and derive the compressible Primitive Equations.
first_indexed 2024-03-11T16:16:26Z
format Article
id doaj.art-943df7fc96504185bdece68ff33d4a9a
institution Directory Open Access Journal
issn 1778-3569
language English
last_indexed 2024-03-11T16:16:26Z
publishDate 2021-08-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj.art-943df7fc96504185bdece68ff33d4a9a2023-10-24T14:19:22ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692021-08-01359663964410.5802/crmath.18610.5802/crmath.186On the hydrostatic approximation of compressible anisotropic Navier–Stokes equationsGao, Hongjun0Nečasová, Šárka1Tang, Tong2School of Mathematics, Southeast University, Nanjing 211189, P.R. ChinaInstitute of Mathematics, Žitná 25, 115 67 Praha 1, Czech RepublicSchool of Mathematical Science, Yangzhou University, Yangzhou 225002, P.R. ChinaIn this work, we obtain the hydrostatic approximation by taking the small aspect ratio limit to the Navier–Stokes equations. The aspect ratio (the ratio of the depth to horizontal width) is a geometrical constraint in general large scale motions meaning that the vertical scale is significantly smaller than horizontal. We use the versatile relative entropy inequality to prove rigorously the limit from the compressible Navier–Stokes equations to the compressible Primitive Equations. This is the first work to use relative entropy inequality for proving hydrostatic approximation and derive the compressible Primitive Equations.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.186/
spellingShingle Gao, Hongjun
Nečasová, Šárka
Tang, Tong
On the hydrostatic approximation of compressible anisotropic Navier–Stokes equations
Comptes Rendus. Mathématique
title On the hydrostatic approximation of compressible anisotropic Navier–Stokes equations
title_full On the hydrostatic approximation of compressible anisotropic Navier–Stokes equations
title_fullStr On the hydrostatic approximation of compressible anisotropic Navier–Stokes equations
title_full_unstemmed On the hydrostatic approximation of compressible anisotropic Navier–Stokes equations
title_short On the hydrostatic approximation of compressible anisotropic Navier–Stokes equations
title_sort on the hydrostatic approximation of compressible anisotropic navier stokes equations
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.186/
work_keys_str_mv AT gaohongjun onthehydrostaticapproximationofcompressibleanisotropicnavierstokesequations
AT necasovasarka onthehydrostaticapproximationofcompressibleanisotropicnavierstokesequations
AT tangtong onthehydrostaticapproximationofcompressibleanisotropicnavierstokesequations