Asymptotics of the entire functions with $\upsilon$-density of zeros along the logarithmic spirals

Let $\upsilon$ be the growth function such that $r\upsilon'(r)/\upsilon (r) \to 0$ as $r \to +\infty$, $l_\varphi^c = \{z=te^{i(\varphi+c \ln t)}, 1 \leqslant t < +\infty\}$ be the logarithmic spiral, $f$ be the entire function of zero order. The asymptotics of $\ln f(re^{i(\theta +c \ln r)}...

Full description

Bibliographic Details
Main Authors: M.V. Zabolotskyj, Yu.V. Basiuk
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2019-06-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:https://journals.pnu.edu.ua/index.php/cmp/article/view/1504
Description
Summary:Let $\upsilon$ be the growth function such that $r\upsilon'(r)/\upsilon (r) \to 0$ as $r \to +\infty$, $l_\varphi^c = \{z=te^{i(\varphi+c \ln t)}, 1 \leqslant t < +\infty\}$ be the logarithmic spiral, $f$ be the entire function of zero order. The asymptotics of $\ln f(re^{i(\theta +c \ln r)})$ along ordinary logarithmic spirals $l_\theta^c$ of the function $f$ with $\upsilon$-density of zeros along $l_\varphi^c$ outside the $C_0$-set is found. The inverse statement is true just in case zeros of $f$ are placed on the finite logarithmic spirals system $\Gamma_m = \bigcup_{j=0}^m l_{\theta_j}^c$.
ISSN:2075-9827
2313-0210