<i>k</i>-Path-Connectivity of Completely Balanced Tripartite Graphs

For a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)&l...

Full description

Bibliographic Details
Main Authors: Pi Wang, Shasha Li, Xiaoxue Gao
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/11/6/270
_version_ 1797490012430794752
author Pi Wang
Shasha Li
Xiaoxue Gao
author_facet Pi Wang
Shasha Li
Xiaoxue Gao
author_sort Pi Wang
collection DOAJ
description For a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inline-formula> and a set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> of a size at least 2, a path in <i>G</i> is said to be an <i>S</i>-path if it connects all vertices of <i>S</i>. Two <i>S</i>-paths <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mn>2</mn></msub></semantics></math></inline-formula> are said to be <i>internally disjoint</i> if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mrow><mo>(</mo><msub><mi>P</mi><mn>1</mn></msub><mo>)</mo></mrow><mo>∩</mo><mi>E</mi><mrow><mo>(</mo><msub><mi>P</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>=</mo><mo>∅</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mrow><mo>(</mo><msub><mi>P</mi><mn>1</mn></msub><mo>)</mo></mrow><mo>∩</mo><mi>V</mi><mrow><mo>(</mo><msub><mi>P</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>=</mo><mi>S</mi></mrow></semantics></math></inline-formula>; that is, they share no vertices and edges apart from <i>S</i>. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>π</mi><mi>G</mi></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> denote the maximum number of internally disjoint <i>S</i>-paths in <i>G</i>. The <i>k</i>-path-connectivity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>π</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of <i>G</i> is then defined as the minimum <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>π</mi><mi>G</mi></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <i>S</i> ranges over all <i>k</i>-subsets of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>. In this paper, we study the <i>k</i>-path-connectivity of the complete balanced tripartite graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mrow><mi>n</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></semantics></math></inline-formula> and obtain <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>π</mi><mi>k</mi></msub><mfenced separators="" open="(" close=")"><msub><mi>K</mi><mrow><mi>n</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></mfenced><mo>=</mo><mfenced separators="" open="⌊" close="⌋"><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mfenced></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>.</mo></mrow></semantics></math></inline-formula>
first_indexed 2024-03-10T00:25:51Z
format Article
id doaj.art-9440f30ab7424b95a347fe2cd42a6768
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-10T00:25:51Z
publishDate 2022-06-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-9440f30ab7424b95a347fe2cd42a67682023-11-23T15:35:14ZengMDPI AGAxioms2075-16802022-06-0111627010.3390/axioms11060270<i>k</i>-Path-Connectivity of Completely Balanced Tripartite GraphsPi Wang0Shasha Li1Xiaoxue Gao2School of Mathematics and Statistics, Ningbo University, Ningbo 315211, ChinaSchool of Mathematics and Statistics, Ningbo University, Ningbo 315211, ChinaSchool of Mathematics and Statistics, Ningbo University, Ningbo 315211, ChinaFor a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inline-formula> and a set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> of a size at least 2, a path in <i>G</i> is said to be an <i>S</i>-path if it connects all vertices of <i>S</i>. Two <i>S</i>-paths <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mn>2</mn></msub></semantics></math></inline-formula> are said to be <i>internally disjoint</i> if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mrow><mo>(</mo><msub><mi>P</mi><mn>1</mn></msub><mo>)</mo></mrow><mo>∩</mo><mi>E</mi><mrow><mo>(</mo><msub><mi>P</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>=</mo><mo>∅</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mrow><mo>(</mo><msub><mi>P</mi><mn>1</mn></msub><mo>)</mo></mrow><mo>∩</mo><mi>V</mi><mrow><mo>(</mo><msub><mi>P</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>=</mo><mi>S</mi></mrow></semantics></math></inline-formula>; that is, they share no vertices and edges apart from <i>S</i>. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>π</mi><mi>G</mi></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> denote the maximum number of internally disjoint <i>S</i>-paths in <i>G</i>. The <i>k</i>-path-connectivity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>π</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of <i>G</i> is then defined as the minimum <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>π</mi><mi>G</mi></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <i>S</i> ranges over all <i>k</i>-subsets of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>. In this paper, we study the <i>k</i>-path-connectivity of the complete balanced tripartite graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mrow><mi>n</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></semantics></math></inline-formula> and obtain <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>π</mi><mi>k</mi></msub><mfenced separators="" open="(" close=")"><msub><mi>K</mi><mrow><mi>n</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></mfenced><mo>=</mo><mfenced separators="" open="⌊" close="⌋"><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mfenced></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>.</mo></mrow></semantics></math></inline-formula>https://www.mdpi.com/2075-1680/11/6/270path-connectivityinternally disjoint pathscomplete balanced tripartite graphs
spellingShingle Pi Wang
Shasha Li
Xiaoxue Gao
<i>k</i>-Path-Connectivity of Completely Balanced Tripartite Graphs
Axioms
path-connectivity
internally disjoint paths
complete balanced tripartite graphs
title <i>k</i>-Path-Connectivity of Completely Balanced Tripartite Graphs
title_full <i>k</i>-Path-Connectivity of Completely Balanced Tripartite Graphs
title_fullStr <i>k</i>-Path-Connectivity of Completely Balanced Tripartite Graphs
title_full_unstemmed <i>k</i>-Path-Connectivity of Completely Balanced Tripartite Graphs
title_short <i>k</i>-Path-Connectivity of Completely Balanced Tripartite Graphs
title_sort i k i path connectivity of completely balanced tripartite graphs
topic path-connectivity
internally disjoint paths
complete balanced tripartite graphs
url https://www.mdpi.com/2075-1680/11/6/270
work_keys_str_mv AT piwang ikipathconnectivityofcompletelybalancedtripartitegraphs
AT shashali ikipathconnectivityofcompletelybalancedtripartitegraphs
AT xiaoxuegao ikipathconnectivityofcompletelybalancedtripartitegraphs