Blow-up for a semilinear heat equation with moving nonlinear reaction

We study the behavior of solutions of the semilinear problem $$\displaylines{ u_t=u_{xx}+(1+(T-t)^{-\alpha}\chi_{\{|x|<(T-t)^{1/2}\}}) u^p,\quad x\in\mathbb R,\; t\in(0,T),\cr u(x,0)=u_0(x)\ge 0, \quad x\in\mathbb R, }$$ with $\alpha>0$ and p>0 We describe, in terms of the parameters...

Full description

Bibliographic Details
Main Author: Raul Ferreira
Format: Article
Language:English
Published: Texas State University 2018-01-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2018/32/abstr.html
_version_ 1819128213274624000
author Raul Ferreira
author_facet Raul Ferreira
author_sort Raul Ferreira
collection DOAJ
description We study the behavior of solutions of the semilinear problem $$\displaylines{ u_t=u_{xx}+(1+(T-t)^{-\alpha}\chi_{\{|x|<(T-t)^{1/2}\}}) u^p,\quad x\in\mathbb R,\; t\in(0,T),\cr u(x,0)=u_0(x)\ge 0, \quad x\in\mathbb R, }$$ with $\alpha>0$ and p>0 We describe, in terms of the parameters when the solution is bounded and when it blows up. For blowing up solutions we find the blow-up rate and the blow-up set.
first_indexed 2024-12-22T08:24:15Z
format Article
id doaj.art-94419f6cf6c040dc8fe1844fa12a0799
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-22T08:24:15Z
publishDate 2018-01-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-94419f6cf6c040dc8fe1844fa12a07992022-12-21T18:32:40ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912018-01-01201832,111Blow-up for a semilinear heat equation with moving nonlinear reactionRaul Ferreira0 Univ. Complutense de Madrid, Spain We study the behavior of solutions of the semilinear problem $$\displaylines{ u_t=u_{xx}+(1+(T-t)^{-\alpha}\chi_{\{|x|<(T-t)^{1/2}\}}) u^p,\quad x\in\mathbb R,\; t\in(0,T),\cr u(x,0)=u_0(x)\ge 0, \quad x\in\mathbb R, }$$ with $\alpha>0$ and p>0 We describe, in terms of the parameters when the solution is bounded and when it blows up. For blowing up solutions we find the blow-up rate and the blow-up set.http://ejde.math.txstate.edu/Volumes/2018/32/abstr.htmlSemilinear parabolic equationblow-upasymptotic behaviour
spellingShingle Raul Ferreira
Blow-up for a semilinear heat equation with moving nonlinear reaction
Electronic Journal of Differential Equations
Semilinear parabolic equation
blow-up
asymptotic behaviour
title Blow-up for a semilinear heat equation with moving nonlinear reaction
title_full Blow-up for a semilinear heat equation with moving nonlinear reaction
title_fullStr Blow-up for a semilinear heat equation with moving nonlinear reaction
title_full_unstemmed Blow-up for a semilinear heat equation with moving nonlinear reaction
title_short Blow-up for a semilinear heat equation with moving nonlinear reaction
title_sort blow up for a semilinear heat equation with moving nonlinear reaction
topic Semilinear parabolic equation
blow-up
asymptotic behaviour
url http://ejde.math.txstate.edu/Volumes/2018/32/abstr.html
work_keys_str_mv AT raulferreira blowupforasemilinearheatequationwithmovingnonlinearreaction