Deep learning approach to detect high-risk oral epithelial dysplasia: A step towards computer-assisted dysplasia grading

Introduction: Oral epithelial dysplasia (OED) is associated with high interobserver and intraobserver disagreement. With the exponential increase in the applicability of artificial intelligence tools such as deep learning (DL) in pathology, it would now be possible to achieve high accuracy and objec...

Full description

Bibliographic Details
Main Authors: C Nandini, Shaik Basha, Aarchi Agarawal, R Parikh Neelampari, Krishna P Miyapuram, R Jadeja Nileshwariba
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2023-01-01
Series:Advances in Human Biology
Subjects:
Online Access:http://www.aihbonline.com/article.asp?issn=2321-8568;year=2023;volume=13;issue=1;spage=57;epage=60;aulast=Nandini
Description
Summary:Introduction: Oral epithelial dysplasia (OED) is associated with high interobserver and intraobserver disagreement. With the exponential increase in the applicability of artificial intelligence tools such as deep learning (DL) in pathology, it would now be possible to achieve high accuracy and objectivity in grading of OED. In this research work, we have proposed a DL approach to epithelial dysplasia grading by creating a convolutional neural network (CNN) model from scratch. Materials and Methods: The dataset includes 445 high-resolution ×400 photomicrographs captured from histopathologically diagnosed cases of high-risk dysplasia (HR) and normal buccal mucosa (NBM) that were used to train, validate and test the two-dimensional CNN (2DCNN) model. Results: The whole dataset was divided into 60% training set, 20% validation set and 20% test set. The model achieved training accuracy of 97.21%, validation accuracy of 90% and test accuracy of 91.30%. Conclusion: The DL model was able to distinguish between normal epithelium and HR epithelial dysplasia with high grades of accuracy. These results are encouraging for researchers to formulate DL models to grade and classify OED using various grading systems.
ISSN:2321-8568
2348-4691