Summary: | Teknolojinin ilerlemesi ve internetin gelişmesi ile beraber
günümüzde bilginin gücü de ön plana çıkmıştır. Bununla beraber internet
dünyasında bilgi kirliliği ve karmaşası ortaya çıkmaya başlamıştır. Bu
karmaşadan anlamlı verilerin çıkartılması ve yorumlanabilmesi için makine
öğrenmesi algoritmalarından yararlanılabilir. Bu çalışmada yazı formunda
girilen açıklamanın kategori bilgisine ulaşılması amaçlanmıştır. Bir e-ticaret
sitesinden ürün bilgileri etiketlenerek veri seti elde edilmiştir. Toplanan bu
veri seti makine öğrenmesi algoritmalarıyla model eğitimi gerçekleştirilmiş ve
9 farklı katagoriye ayırmak için doğru tahminleme yapması amaçlanmıştır. Bu
eğitim sırasında Random Forest, Karar Ağacı, Multinominal Naive Bayes
(Multinominal NB), Logistic Regression, Destek Vektör Makineleri (DVM) ve Yapay
Sinir Ağları (YSA) sınıflandırıcıları kullanılmış ve çıkan sonuçlar tablolarla
karşılaştırılmıştır.
|