Summary: | Abstract In this paper, we study the existence and uniqueness of positive solutions for a class of a fractional differential equation system of Riemann–Liouville type on infinite intervals with infinite-point boundary conditions. First, the higher-order equation is reduced to the lower-order equation, and then it is transformed into the equivalent integral equation. Secondly, we obtain the existence and uniqueness of positive solutions for each fixed parameter λ > 0 $\lambda >0$ by using the mixed monotone operators fixed-point theorem. The results obtained in this paper show that the unique positive solution has good properties: continuity, monotonicity, iteration, and approximation. Finally, an example is given to demonstrate the application of our main results.
|