Flexible and Efficient Inference with Particles for the Variational Gaussian Approximation

Variational inference is a powerful framework, used to approximate intractable posteriors through variational distributions. The de facto standard is to rely on Gaussian variational families, which come with numerous advantages: they are easy to sample from, simple to parametrize, and many expectati...

Full description

Bibliographic Details
Main Authors: Théo Galy-Fajou, Valerio Perrone, Manfred Opper
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/8/990
Description
Summary:Variational inference is a powerful framework, used to approximate intractable posteriors through variational distributions. The de facto standard is to rely on Gaussian variational families, which come with numerous advantages: they are easy to sample from, simple to parametrize, and many expectations are known in closed-form or readily computed by quadrature. In this paper, we view the Gaussian variational approximation problem through the lens of gradient flows. We introduce a flexible and efficient algorithm based on a linear flow leading to a particle-based approximation. We prove that, with a sufficient number of particles, our algorithm converges linearly to the exact solution for Gaussian targets, and a low-rank approximation otherwise. In addition to the theoretical analysis, we show, on a set of synthetic and real-world high-dimensional problems, that our algorithm outperforms existing methods with Gaussian targets while performing on a par with non-Gaussian targets.
ISSN:1099-4300