SAĞLIK HARCAMASININ TAHMİNİNDE MAKİNE ÖĞRENMESİ REGRESYON YÖNTEMLERİNİN KARŞILAŞTIRILMASI
Farklı veri setleri üzerinde yapılan uygulamalar sonucunda modellenmesi zor olan değişkenlerin varlığında klasik regresyon yöntemlerine alternatif olarak makine öğrenmesi regresyon yöntemlerinin kullanımı tavsiye edilmektedir. Sağlık harcaması modellenmesi zor olan bir değişken olup, literatürde mak...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Bursa Uludag University
2017-09-01
|
Series: | Uludağ University Journal of The Faculty of Engineering |
Subjects: | |
Online Access: | https://dergipark.org.tr/tr/pub/uumfd/issue/30563/338805 |
Summary: | Farklı veri setleri üzerinde yapılan uygulamalar
sonucunda modellenmesi zor olan değişkenlerin varlığında klasik regresyon
yöntemlerine alternatif olarak makine öğrenmesi regresyon yöntemlerinin
kullanımı tavsiye edilmektedir. Sağlık harcaması modellenmesi zor olan bir
değişken olup, literatürde makine öğrenmesi regresyon yöntemleri karşılaştırılarak
bu değişkenin modellendiği bir çalışmaya rastlanmamıştır. Bu çalışmada kişi
başı sağlık harcamasının tahmini amacıyla bir çoklu regresyon modeli
oluşturulmuştur. Farklı hiperparametre değerleri belirlendiğinde elde edilen
Lasso Regresyon, Rastgele Ağaç Regresyonu ile Destek Vektör Makinesi Regresyon
performans sonuçları karşılaştırılmıştır. Çalışmada hiperparametre değeri
olarak Lasso Regresyon için lamda (λ) değeri, Rastgele Ağaç Regresyonu için
ağaç sayısı, Destek Vektör Regresyonu için epsilon () değeri esas alınmıştır. Sonuçlar 5 ile 50
arasında değişen “k” parça çapraz geçerlilik uygulanarak performe edildiğinde makine
öğrenmesi regresyon yöntemlerine ait performans sonuçlarının R2,
RMSE ve MAE değerleri bakımından istatistiksel olarak anlamlı farklılıklar gösterdiği
(p<0.001) tespit
edilmiştir. Tahmin performanslarına ait yüzey ve çubuk grafikleri ile
istatistiksel test sonuçları incelendiğinde farklı hiperparametre değerlerine
göre Rastgele Ağaç Regresyonun (R2 ˃ 0.7500, RMSE ≤ 0.6000 ve MAE ≤
0.4000) daha iyi tahmin sonuçlarına sahip olduğu belirlenmiştir. Çalışma
sonuçlarının, sağlık harcamasının modellendiği araştırmalar için makine
öğrenmesi regresyon yöntemleri kullanıldığında en uygun hiperparametre
değerlerinin belirlenmesi konusunda katkı sağlaması beklenmektedir. |
---|---|
ISSN: | 2148-4147 2148-4155 |