SAĞLIK HARCAMASININ TAHMİNİNDE MAKİNE ÖĞRENMESİ REGRESYON YÖNTEMLERİNİN KARŞILAŞTIRILMASI

Farklı veri setleri üzerinde yapılan uygulamalar sonucunda modellenmesi zor olan değişkenlerin varlığında klasik regresyon yöntemlerine alternatif olarak makine öğrenmesi regresyon yöntemlerinin kullanımı tavsiye edilmektedir. Sağlık harcaması modellenmesi zor olan bir değişken olup, literatürde mak...

Full description

Bibliographic Details
Main Author: Songül Çınaroğlu
Format: Article
Language:English
Published: Bursa Uludag University 2017-09-01
Series:Uludağ University Journal of The Faculty of Engineering
Subjects:
Online Access:https://dergipark.org.tr/tr/pub/uumfd/issue/30563/338805
Description
Summary:Farklı veri setleri üzerinde yapılan uygulamalar sonucunda modellenmesi zor olan değişkenlerin varlığında klasik regresyon yöntemlerine alternatif olarak makine öğrenmesi regresyon yöntemlerinin kullanımı tavsiye edilmektedir. Sağlık harcaması modellenmesi zor olan bir değişken olup, literatürde makine öğrenmesi regresyon yöntemleri karşılaştırılarak bu değişkenin modellendiği bir çalışmaya rastlanmamıştır. Bu çalışmada kişi başı sağlık harcamasının tahmini amacıyla bir çoklu regresyon modeli oluşturulmuştur. Farklı hiperparametre değerleri belirlendiğinde elde edilen Lasso Regresyon, Rastgele Ağaç Regresyonu ile Destek Vektör Makinesi Regresyon performans sonuçları karşılaştırılmıştır. Çalışmada hiperparametre değeri olarak Lasso Regresyon için lamda (λ) değeri, Rastgele Ağaç Regresyonu için ağaç sayısı, Destek Vektör Regresyonu için epsilon () değeri esas alınmıştır. Sonuçlar 5 ile 50 arasında değişen “k” parça çapraz geçerlilik uygulanarak performe edildiğinde makine öğrenmesi regresyon yöntemlerine ait performans sonuçlarının R2, RMSE ve MAE değerleri bakımından istatistiksel olarak anlamlı farklılıklar gösterdiği (p<0.001) tespit edilmiştir. Tahmin performanslarına ait yüzey ve çubuk grafikleri ile istatistiksel test sonuçları incelendiğinde farklı hiperparametre değerlerine göre Rastgele Ağaç Regresyonun (R2 ˃ 0.7500, RMSE ≤ 0.6000 ve MAE ≤ 0.4000) daha iyi tahmin sonuçlarına sahip olduğu belirlenmiştir. Çalışma sonuçlarının, sağlık harcamasının modellendiği araştırmalar için makine öğrenmesi regresyon yöntemleri kullanıldığında en uygun hiperparametre değerlerinin belirlenmesi konusunda katkı sağlaması beklenmektedir.
ISSN:2148-4147
2148-4155