Some Variations of Perfect Graphs

We consider (ψk−γk−1)-perfect graphs, i.e., graphs G for which ψk(H) = γk−1(H) for any induced subgraph H of G, where ψk and γk−1 are the k-path vertex cover number and the distance (k − 1)-domination number, respectively. We study (ψk−γk−1)-perfect paths, cycles and complete graphs for k ≥ 2. Moreo...

Full description

Bibliographic Details
Main Authors: Dettlaff Magda, Lemańska Magdalena, Semanišin Gabriel, Zuazua Rita
Format: Article
Language:English
Published: University of Zielona Góra 2016-08-01
Series:Discussiones Mathematicae Graph Theory
Subjects:
Online Access:https://doi.org/10.7151/dmgt.1880
Description
Summary:We consider (ψk−γk−1)-perfect graphs, i.e., graphs G for which ψk(H) = γk−1(H) for any induced subgraph H of G, where ψk and γk−1 are the k-path vertex cover number and the distance (k − 1)-domination number, respectively. We study (ψk−γk−1)-perfect paths, cycles and complete graphs for k ≥ 2. Moreover, we provide a complete characterisation of (ψ2 − γ1)- perfect graphs describing the set of its forbidden induced subgraphs and providing the explicit characterisation of the structure of graphs belonging to this family.
ISSN:2083-5892