Some Extremal Graphs with Respect to Sombor Index

Let <i>G</i> be a graph with set of vertices <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow>...

Full description

Bibliographic Details
Main Authors: Kinkar Chandra Das, Yilun Shang
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/11/1202
_version_ 1797532672774373376
author Kinkar Chandra Das
Yilun Shang
author_facet Kinkar Chandra Das
Yilun Shang
author_sort Kinkar Chandra Das
collection DOAJ
description Let <i>G</i> be a graph with set of vertices <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>=</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula> and edge set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Very recently, a new degree-based molecular structure descriptor, called Sombor index is denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>O</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> and is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>O</mi><mo>=</mo><mi>S</mi><mi>O</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mstyle displaystyle="true"><munder><mo>∑</mo><mrow><msub><mi>v</mi><mi>i</mi></msub><msub><mi>v</mi><mi>j</mi></msub><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></munder></mstyle><mspace width="0.166667em"></mspace><msqrt><mrow><msub><mi>d</mi><mi>G</mi></msub><msup><mrow><mo>(</mo><msub><mi>v</mi><mi>i</mi></msub><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msub><mi>d</mi><mi>G</mi></msub><msup><mrow><mo>(</mo><msub><mi>v</mi><mi>j</mi></msub><mo>)</mo></mrow><mn>2</mn></msup></mrow></msqrt></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mi>G</mi></msub><mrow><mo>(</mo><msub><mi>v</mi><mi>i</mi></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is the degree of the vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula> in <i>G</i>. In this paper we present some lower and upper bounds on the Sombor index of graph <i>G</i> in terms of graph parameters (clique number, chromatic number, number of pendant vertices, etc.) and characterize the extremal graphs.
first_indexed 2024-03-10T11:03:38Z
format Article
id doaj.art-947feb469bd9483ea7293d67ef90eeb6
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T11:03:38Z
publishDate 2021-05-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-947feb469bd9483ea7293d67ef90eeb62023-11-21T21:22:02ZengMDPI AGMathematics2227-73902021-05-01911120210.3390/math9111202Some Extremal Graphs with Respect to Sombor IndexKinkar Chandra Das0Yilun Shang1Department of Mathematics, Sungkyunkwan University, Suwon 16419, KoreaDepartment of Computer and Information Sciences, Northumbria University, Newcastle NE1 8ST, UKLet <i>G</i> be a graph with set of vertices <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>=</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula> and edge set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Very recently, a new degree-based molecular structure descriptor, called Sombor index is denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>O</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> and is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>O</mi><mo>=</mo><mi>S</mi><mi>O</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mstyle displaystyle="true"><munder><mo>∑</mo><mrow><msub><mi>v</mi><mi>i</mi></msub><msub><mi>v</mi><mi>j</mi></msub><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></munder></mstyle><mspace width="0.166667em"></mspace><msqrt><mrow><msub><mi>d</mi><mi>G</mi></msub><msup><mrow><mo>(</mo><msub><mi>v</mi><mi>i</mi></msub><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msub><mi>d</mi><mi>G</mi></msub><msup><mrow><mo>(</mo><msub><mi>v</mi><mi>j</mi></msub><mo>)</mo></mrow><mn>2</mn></msup></mrow></msqrt></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mi>G</mi></msub><mrow><mo>(</mo><msub><mi>v</mi><mi>i</mi></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is the degree of the vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula> in <i>G</i>. In this paper we present some lower and upper bounds on the Sombor index of graph <i>G</i> in terms of graph parameters (clique number, chromatic number, number of pendant vertices, etc.) and characterize the extremal graphs.https://www.mdpi.com/2227-7390/9/11/1202graphSombor indexchromatic numberclique number
spellingShingle Kinkar Chandra Das
Yilun Shang
Some Extremal Graphs with Respect to Sombor Index
Mathematics
graph
Sombor index
chromatic number
clique number
title Some Extremal Graphs with Respect to Sombor Index
title_full Some Extremal Graphs with Respect to Sombor Index
title_fullStr Some Extremal Graphs with Respect to Sombor Index
title_full_unstemmed Some Extremal Graphs with Respect to Sombor Index
title_short Some Extremal Graphs with Respect to Sombor Index
title_sort some extremal graphs with respect to sombor index
topic graph
Sombor index
chromatic number
clique number
url https://www.mdpi.com/2227-7390/9/11/1202
work_keys_str_mv AT kinkarchandradas someextremalgraphswithrespecttosomborindex
AT yilunshang someextremalgraphswithrespecttosomborindex