A hollow mesoporous carbon from metal-organic framework for robust adsorbability of ibuprofen drug in water

Herein, we described a tunable method for synthesis of novel hollow mesoporous carbon (MPC) via direct pyrolysis (800oC) of MIL-53 (Fe) as a self-sacrificed template. The structural characterization revealed a hollow, amorphous, defective and mesoporous MPC along with high surface area (approx. 200...

Full description

Bibliographic Details
Main Authors: Thuan Van Tran, Duyen Thi Cam Nguyen, Hanh T. N. Le, Oanh T. K. Nguyen, Vinh Huu Nguyen, Thuong Thi Nguyen, Long Giang Bach, Trinh Duy Nguyen
Format: Article
Language:English
Published: The Royal Society 2019-05-01
Series:Royal Society Open Science
Subjects:
Online Access:https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.190058
Description
Summary:Herein, we described a tunable method for synthesis of novel hollow mesoporous carbon (MPC) via direct pyrolysis (800oC) of MIL-53 (Fe) as a self-sacrificed template. The structural characterization revealed a hollow, amorphous, defective and mesoporous MPC along with high surface area (approx. 200 m2 g−1). For the experiments of ibuprofen adsorption onto MPC, effects of contact time, MPC dosage, ionic strength, concentration and temperature were systematically investigated. The optimal conditions consisted of pH = 3, concentration 10 mg l−1 and dose of 0.1 g l−1 for the highest ibuprofen removal efficiency up to 88.3% after 4 h. Moreover, adsorption behaviour, whereby chemisorption and monolayer controlled the uptake of ibuprofen over MPC, were assumed. Adsorption mechanisms including H-bonding, π–π interaction, metal–oxygen, electrostatic attraction were rigorously proposed. In comparison to several studies, the MPC nanocomposite in this work obtained the outstanding maximum adsorption capacity (206.5 mg g−1) and good reusability (5 cycles); thus, it can be used as a feasible alternative for decontamination of ibuprofen anti-inflammatory drug from water.
ISSN:2054-5703