Optimized DNA-based identification of Toxocara spp. eggs in soil and sand samples

Abstract Background Toxocara canis and Toxocara cati are globally distributed roundworms and causative agents of human toxocariasis, via ingestion of Toxocara eggs. Control of Toxocara infections is constrained by a lack of sensitive methods for screening of animal faeces and environmental samples p...

Full description

Bibliographic Details
Main Authors: Wojciech Jarosz, Jean-Francois Durant, Leonid Mwana Wa Bene Irenge, Renata Fogt-Wyrwas, Hanna Mizgajska-Wiktor, Jean-Luc Gala
Format: Article
Language:English
Published: BMC 2021-08-01
Series:Parasites & Vectors
Subjects:
Online Access:https://doi.org/10.1186/s13071-021-04904-1
_version_ 1819069330375049216
author Wojciech Jarosz
Jean-Francois Durant
Leonid Mwana Wa Bene Irenge
Renata Fogt-Wyrwas
Hanna Mizgajska-Wiktor
Jean-Luc Gala
author_facet Wojciech Jarosz
Jean-Francois Durant
Leonid Mwana Wa Bene Irenge
Renata Fogt-Wyrwas
Hanna Mizgajska-Wiktor
Jean-Luc Gala
author_sort Wojciech Jarosz
collection DOAJ
description Abstract Background Toxocara canis and Toxocara cati are globally distributed roundworms and causative agents of human toxocariasis, via ingestion of Toxocara eggs. Control of Toxocara infections is constrained by a lack of sensitive methods for screening of animal faeces and environmental samples potentially contaminated by Toxocara eggs. In this work, a pre-analytical method for efficient extraction of DNA from Toxocara eggs in environmental samples was set up using our previously validated T. canis- and T. cati-specific quantitative real-time polymerase chain reaction (qPCR). For this purpose, the influence of different methods for egg lysis, DNA extraction and purification for removal of PCR inhibitors were assessed on environmental samples. Methods To select the best egg disruption method, six protocols were compared on pure T. canis egg suspensions, including enzymatic lysis and thermal or mechanical disruption. Based on the selected best method, an analytical workflow was set up to compare two DNA extraction methods (FastDNA™ SPIN Kit for Soil versus DNeasy® PowerMax® Soil Kit) with an optional dilution and/or clean-up (Agencourt® AMPure®) step. This workflow was evaluated on 10-g soil and 10-g sand samples spiked with egg suspensions of T. canis (tenfold dilutions of 104 eggs in triplicate). The capacity of the different methods, used alone or in combination, to increase the ratio of positive tests was assessed. The resulting optimal workflow for processing spiked soil samples was then tested on environmental soil samples and compared with the conventional flotation-centrifugation and microscopic examination of Toxocara eggs. Results The most effective DNA extraction method for Toxocara eggs in soil samples consisted in the combination of mechanical lysis of eggs using beads, followed by DNA extraction with the DNeasy® PowerMax® Soil Kit, and completed with an additional DNA clean-up step with AMPure® beads and a sample DNA dilution (1:10). This workflow exhibited a limit of detection of 4 and 46 T. canis eggs in 10-g sand and 10-g soil samples, respectively. Conclusions The pre-analytical flow process developed here combined with qPCR represents an improved, potentially automatable, and cost-effective method for the surveillance of Toxocara contamination in the environment. Graphical Abstract
first_indexed 2024-12-21T16:48:20Z
format Article
id doaj.art-94ab74d32ef84398b58381bfc68dd62f
institution Directory Open Access Journal
issn 1756-3305
language English
last_indexed 2024-12-21T16:48:20Z
publishDate 2021-08-01
publisher BMC
record_format Article
series Parasites & Vectors
spelling doaj.art-94ab74d32ef84398b58381bfc68dd62f2022-12-21T18:56:56ZengBMCParasites & Vectors1756-33052021-08-011411710.1186/s13071-021-04904-1Optimized DNA-based identification of Toxocara spp. eggs in soil and sand samplesWojciech Jarosz0Jean-Francois Durant1Leonid Mwana Wa Bene Irenge2Renata Fogt-Wyrwas3Hanna Mizgajska-Wiktor4Jean-Luc Gala5Department of Biology and Anatomy, Faculty of Health Sciences, Poznań University of Physical EducationCenter for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université Catholique de LouvainCenter for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université Catholique de LouvainDepartment of Biology and Anatomy, Faculty of Health Sciences, Poznań University of Physical EducationDepartment of Biology and Anatomy, Faculty of Health Sciences, Poznań University of Physical EducationCenter for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université Catholique de LouvainAbstract Background Toxocara canis and Toxocara cati are globally distributed roundworms and causative agents of human toxocariasis, via ingestion of Toxocara eggs. Control of Toxocara infections is constrained by a lack of sensitive methods for screening of animal faeces and environmental samples potentially contaminated by Toxocara eggs. In this work, a pre-analytical method for efficient extraction of DNA from Toxocara eggs in environmental samples was set up using our previously validated T. canis- and T. cati-specific quantitative real-time polymerase chain reaction (qPCR). For this purpose, the influence of different methods for egg lysis, DNA extraction and purification for removal of PCR inhibitors were assessed on environmental samples. Methods To select the best egg disruption method, six protocols were compared on pure T. canis egg suspensions, including enzymatic lysis and thermal or mechanical disruption. Based on the selected best method, an analytical workflow was set up to compare two DNA extraction methods (FastDNA™ SPIN Kit for Soil versus DNeasy® PowerMax® Soil Kit) with an optional dilution and/or clean-up (Agencourt® AMPure®) step. This workflow was evaluated on 10-g soil and 10-g sand samples spiked with egg suspensions of T. canis (tenfold dilutions of 104 eggs in triplicate). The capacity of the different methods, used alone or in combination, to increase the ratio of positive tests was assessed. The resulting optimal workflow for processing spiked soil samples was then tested on environmental soil samples and compared with the conventional flotation-centrifugation and microscopic examination of Toxocara eggs. Results The most effective DNA extraction method for Toxocara eggs in soil samples consisted in the combination of mechanical lysis of eggs using beads, followed by DNA extraction with the DNeasy® PowerMax® Soil Kit, and completed with an additional DNA clean-up step with AMPure® beads and a sample DNA dilution (1:10). This workflow exhibited a limit of detection of 4 and 46 T. canis eggs in 10-g sand and 10-g soil samples, respectively. Conclusions The pre-analytical flow process developed here combined with qPCR represents an improved, potentially automatable, and cost-effective method for the surveillance of Toxocara contamination in the environment. Graphical Abstracthttps://doi.org/10.1186/s13071-021-04904-1Toxocara canisToxocara catiHelminth eggsLimit of detectionSoilSand
spellingShingle Wojciech Jarosz
Jean-Francois Durant
Leonid Mwana Wa Bene Irenge
Renata Fogt-Wyrwas
Hanna Mizgajska-Wiktor
Jean-Luc Gala
Optimized DNA-based identification of Toxocara spp. eggs in soil and sand samples
Parasites & Vectors
Toxocara canis
Toxocara cati
Helminth eggs
Limit of detection
Soil
Sand
title Optimized DNA-based identification of Toxocara spp. eggs in soil and sand samples
title_full Optimized DNA-based identification of Toxocara spp. eggs in soil and sand samples
title_fullStr Optimized DNA-based identification of Toxocara spp. eggs in soil and sand samples
title_full_unstemmed Optimized DNA-based identification of Toxocara spp. eggs in soil and sand samples
title_short Optimized DNA-based identification of Toxocara spp. eggs in soil and sand samples
title_sort optimized dna based identification of toxocara spp eggs in soil and sand samples
topic Toxocara canis
Toxocara cati
Helminth eggs
Limit of detection
Soil
Sand
url https://doi.org/10.1186/s13071-021-04904-1
work_keys_str_mv AT wojciechjarosz optimizeddnabasedidentificationoftoxocarasppeggsinsoilandsandsamples
AT jeanfrancoisdurant optimizeddnabasedidentificationoftoxocarasppeggsinsoilandsandsamples
AT leonidmwanawabeneirenge optimizeddnabasedidentificationoftoxocarasppeggsinsoilandsandsamples
AT renatafogtwyrwas optimizeddnabasedidentificationoftoxocarasppeggsinsoilandsandsamples
AT hannamizgajskawiktor optimizeddnabasedidentificationoftoxocarasppeggsinsoilandsandsamples
AT jeanlucgala optimizeddnabasedidentificationoftoxocarasppeggsinsoilandsandsamples