General numerical radius inequalities for matrices of operators
Let Ai ∈ B(H), (i = 1, 2, ..., n), and T=[0⋯0A1⋮⋰A200⋰⋰⋮An0⋯0] $ T = \left[ {\matrix{ 0 & \cdots & 0 & {A_1 } \cr \vdots & {\mathinner{\mkern2mu\raise1pt\hbox{.}\mkern2mu \raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkern1mu}} & {A_2 } & 0 \cr 0 & {\ma...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2016-01-01
|
Series: | Open Mathematics |
Subjects: | |
Online Access: | https://doi.org/10.1515/math-2016-0011 |
_version_ | 1818716501588312064 |
---|---|
author | Al-Dolat Mohammed Al-Zoubi Khaldoun Ali Mohammed Bani-Ahmad Feras |
author_facet | Al-Dolat Mohammed Al-Zoubi Khaldoun Ali Mohammed Bani-Ahmad Feras |
author_sort | Al-Dolat Mohammed |
collection | DOAJ |
description | Let Ai ∈ B(H), (i = 1, 2, ..., n), and T=[0⋯0A1⋮⋰A200⋰⋰⋮An0⋯0]
$
T = \left[ {\matrix{
0 & \cdots & 0 & {A_1 } \cr
\vdots & {\mathinner{\mkern2mu\raise1pt\hbox{.}\mkern2mu
\raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkern1mu}} & {A_2 } & 0 \cr
0 & {\mathinner{\mkern2mu\raise1pt\hbox{.}\mkern2mu
\raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkern1mu}} & {\mathinner{\mkern2mu\raise1pt\hbox{.}\mkern2mu
\raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkern1mu}} & \vdots \cr
{A_n } & 0 & \cdots & 0 \cr
} } \right]
$
. In this paper, we present some upper bounds and lower bounds for w(T). At the end of this paper we drive a new bound for the zeros of polynomials. |
first_indexed | 2024-12-17T19:20:16Z |
format | Article |
id | doaj.art-94baa6eb4c6e41b5b777319b228d25d2 |
institution | Directory Open Access Journal |
issn | 2391-5455 |
language | English |
last_indexed | 2024-12-17T19:20:16Z |
publishDate | 2016-01-01 |
publisher | De Gruyter |
record_format | Article |
series | Open Mathematics |
spelling | doaj.art-94baa6eb4c6e41b5b777319b228d25d22022-12-21T21:35:35ZengDe GruyterOpen Mathematics2391-54552016-01-0114110911710.1515/math-2016-0011math-2016-0011General numerical radius inequalities for matrices of operatorsAl-Dolat Mohammed0Al-Zoubi Khaldoun1Ali Mohammed2Bani-Ahmad Feras3Department of Mathematics and Statistics, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, JordanDepartment of Mathematics and Statistics, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, JordanDepartment of Mathematics and Statistics, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, JordanDepartment of Mathematics, Hashemite University, JordanLet Ai ∈ B(H), (i = 1, 2, ..., n), and T=[0⋯0A1⋮⋰A200⋰⋰⋮An0⋯0] $ T = \left[ {\matrix{ 0 & \cdots & 0 & {A_1 } \cr \vdots & {\mathinner{\mkern2mu\raise1pt\hbox{.}\mkern2mu \raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkern1mu}} & {A_2 } & 0 \cr 0 & {\mathinner{\mkern2mu\raise1pt\hbox{.}\mkern2mu \raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkern1mu}} & {\mathinner{\mkern2mu\raise1pt\hbox{.}\mkern2mu \raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkern1mu}} & \vdots \cr {A_n } & 0 & \cdots & 0 \cr } } \right] $ . In this paper, we present some upper bounds and lower bounds for w(T). At the end of this paper we drive a new bound for the zeros of polynomials.https://doi.org/10.1515/math-2016-0011numerical radiusoperator normcartesian decomposition47a0547a1047a12 |
spellingShingle | Al-Dolat Mohammed Al-Zoubi Khaldoun Ali Mohammed Bani-Ahmad Feras General numerical radius inequalities for matrices of operators Open Mathematics numerical radius operator norm cartesian decomposition 47a05 47a10 47a12 |
title | General numerical radius inequalities for matrices of operators |
title_full | General numerical radius inequalities for matrices of operators |
title_fullStr | General numerical radius inequalities for matrices of operators |
title_full_unstemmed | General numerical radius inequalities for matrices of operators |
title_short | General numerical radius inequalities for matrices of operators |
title_sort | general numerical radius inequalities for matrices of operators |
topic | numerical radius operator norm cartesian decomposition 47a05 47a10 47a12 |
url | https://doi.org/10.1515/math-2016-0011 |
work_keys_str_mv | AT aldolatmohammed generalnumericalradiusinequalitiesformatricesofoperators AT alzoubikhaldoun generalnumericalradiusinequalitiesformatricesofoperators AT alimohammed generalnumericalradiusinequalitiesformatricesofoperators AT baniahmadferas generalnumericalradiusinequalitiesformatricesofoperators |