A microphysics guide to cirrus clouds – Part 1: Cirrus types

The microphysical and radiative properties of cirrus clouds continue to be beyond understanding and thus still represent one of the largest uncertainties in the prediction of the Earth's climate (IPCC, 2013). Our study aims to provide a guide to cirrus microphysics, which is compiled from...

Full description

Bibliographic Details
Main Authors: M. Krämer, C. Rolf, A. Luebke, A. Afchine, N. Spelten, A. Costa, J. Meyer, M. Zöger, J. Smith, R. L. Herman, B. Buchholz, V. Ebert, D. Baumgardner, S. Borrmann, M. Klingebiel, L. Avallone
Format: Article
Language:English
Published: Copernicus Publications 2016-03-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/16/3463/2016/acp-16-3463-2016.pdf
_version_ 1819292137460596736
author M. Krämer
C. Rolf
A. Luebke
A. Luebke
A. Afchine
N. Spelten
A. Costa
J. Meyer
J. Meyer
M. Zöger
J. Smith
R. L. Herman
B. Buchholz
B. Buchholz
V. Ebert
D. Baumgardner
S. Borrmann
M. Klingebiel
M. Klingebiel
L. Avallone
L. Avallone
author_facet M. Krämer
C. Rolf
A. Luebke
A. Luebke
A. Afchine
N. Spelten
A. Costa
J. Meyer
J. Meyer
M. Zöger
J. Smith
R. L. Herman
B. Buchholz
B. Buchholz
V. Ebert
D. Baumgardner
S. Borrmann
M. Klingebiel
M. Klingebiel
L. Avallone
L. Avallone
author_sort M. Krämer
collection DOAJ
description The microphysical and radiative properties of cirrus clouds continue to be beyond understanding and thus still represent one of the largest uncertainties in the prediction of the Earth's climate (IPCC, 2013). Our study aims to provide a guide to cirrus microphysics, which is compiled from an extensive set of model simulations, covering the broad range of atmospheric conditions for cirrus formation and evolution. The model results are portrayed in the same parameter space as field measurements, i.e., in the Ice Water Content-Temperature (IWC-T) parameter space. We validate this cirrus analysis approach by evaluating cirrus data sets from 17 aircraft campaigns, conducted in the last 15 years, spending about 94 h in cirrus over Europe, Australia, Brazil as well as South and North America. Altogether, the approach of this study is to track cirrus IWC development with temperature by means of model simulations, compare with observations and then assign, to a certain degree, cirrus microphysics to the observations. Indeed, the field observations show characteristics expected from the simulated Cirrus Guide. For example, high (low) IWCs are found together with high (low) ice crystal concentrations <i>N</i><sub>ice</sub>. <br><br> An important finding from our study is the classification of two types of cirrus with differing formation mechanisms and microphysical properties: the first cirrus type forms directly as ice (in situ origin cirrus) and splits in two subclasses, depending on the prevailing strength of the updraft: in slow updrafts these cirrus are rather thin with lower IWCs, while in fast updrafts thicker cirrus with higher IWCs can form. The second type consists predominantly of thick cirrus originating from mixed phase clouds (i.e., via freezing of liquid droplets – liquid origin cirrus), which are completely glaciated while lifting to the cirrus formation temperature region (&lt; 235 K). In the European field campaigns, slow updraft in situ origin cirrus occur frequently in low- and high-pressure systems, while fast updraft in situ cirrus appear in conjunction with jet streams or gravity waves. Also, liquid origin cirrus mostly related to warm conveyor belts are found. In the US and tropical campaigns, thick liquid origin cirrus which are formed in large convective systems are detected more frequently.
first_indexed 2024-12-24T03:49:45Z
format Article
id doaj.art-94e304a25f984e8a9487c23804130ddc
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-24T03:49:45Z
publishDate 2016-03-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-94e304a25f984e8a9487c23804130ddc2022-12-21T17:16:36ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242016-03-01163463348310.5194/acp-16-3463-2016A microphysics guide to cirrus clouds – Part 1: Cirrus typesM. Krämer0C. Rolf1A. Luebke2A. Luebke3A. Afchine4N. Spelten5A. Costa6J. Meyer7J. Meyer8M. Zöger9J. Smith10R. L. Herman11B. Buchholz12B. Buchholz13V. Ebert14D. Baumgardner15S. Borrmann16M. Klingebiel17M. Klingebiel18L. Avallone19L. Avallone20Research Center Jülich, Institute for Energy and Climate Research-7, Jülich, GermanyResearch Center Jülich, Institute for Energy and Climate Research-7, Jülich, GermanyResearch Center Jülich, Institute for Energy and Climate Research-7, Jülich, Germanyformerly at: University of Colorado, Laboratory for Atmospheric and Space Physics, Boulder, CO, USAResearch Center Jülich, Institute for Energy and Climate Research-7, Jülich, GermanyResearch Center Jülich, Institute for Energy and Climate Research-7, Jülich, GermanyResearch Center Jülich, Institute for Energy and Climate Research-7, Jülich, GermanyResearch Center Jülich, Institute for Energy and Climate Research-7, Jülich, Germanynow at: Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, Unit “Exposure Scenarios”, Dortmund, GermanyDeutsches Zentrum für Luft- und Raumfahrt, Flugexperimente – Mess- und Sensortechnik, Wessling, GermanyHarvard University, Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAPhysikalisch-Technische Bundesanstalt, Braunschweig, Germanynow at: Princeton University, Department of Civil and Environmental Engineering, USAPhysikalisch-Technische Bundesanstalt, Braunschweig, GermanyDroplet Measurement Technologies, Boulder, CO, USAJohannes-Gutenberg University and Max-Planck Institute for Chemistry, Mainz, GermanyJohannes-Gutenberg University and Max-Planck Institute for Chemistry, Mainz, Germanynow at: Max-Planck-Institute for Meteorology, Hamburg, GermanyDivision of Atmospheric and Geospace Sciences, National Science Foundation, Arlington, VA, USAformerly at: University of Colorado, Laboratory for Atmospheric and Space Physics, Boulder, CO, USAThe microphysical and radiative properties of cirrus clouds continue to be beyond understanding and thus still represent one of the largest uncertainties in the prediction of the Earth's climate (IPCC, 2013). Our study aims to provide a guide to cirrus microphysics, which is compiled from an extensive set of model simulations, covering the broad range of atmospheric conditions for cirrus formation and evolution. The model results are portrayed in the same parameter space as field measurements, i.e., in the Ice Water Content-Temperature (IWC-T) parameter space. We validate this cirrus analysis approach by evaluating cirrus data sets from 17 aircraft campaigns, conducted in the last 15 years, spending about 94 h in cirrus over Europe, Australia, Brazil as well as South and North America. Altogether, the approach of this study is to track cirrus IWC development with temperature by means of model simulations, compare with observations and then assign, to a certain degree, cirrus microphysics to the observations. Indeed, the field observations show characteristics expected from the simulated Cirrus Guide. For example, high (low) IWCs are found together with high (low) ice crystal concentrations <i>N</i><sub>ice</sub>. <br><br> An important finding from our study is the classification of two types of cirrus with differing formation mechanisms and microphysical properties: the first cirrus type forms directly as ice (in situ origin cirrus) and splits in two subclasses, depending on the prevailing strength of the updraft: in slow updrafts these cirrus are rather thin with lower IWCs, while in fast updrafts thicker cirrus with higher IWCs can form. The second type consists predominantly of thick cirrus originating from mixed phase clouds (i.e., via freezing of liquid droplets – liquid origin cirrus), which are completely glaciated while lifting to the cirrus formation temperature region (&lt; 235 K). In the European field campaigns, slow updraft in situ origin cirrus occur frequently in low- and high-pressure systems, while fast updraft in situ cirrus appear in conjunction with jet streams or gravity waves. Also, liquid origin cirrus mostly related to warm conveyor belts are found. In the US and tropical campaigns, thick liquid origin cirrus which are formed in large convective systems are detected more frequently.https://www.atmos-chem-phys.net/16/3463/2016/acp-16-3463-2016.pdf
spellingShingle M. Krämer
C. Rolf
A. Luebke
A. Luebke
A. Afchine
N. Spelten
A. Costa
J. Meyer
J. Meyer
M. Zöger
J. Smith
R. L. Herman
B. Buchholz
B. Buchholz
V. Ebert
D. Baumgardner
S. Borrmann
M. Klingebiel
M. Klingebiel
L. Avallone
L. Avallone
A microphysics guide to cirrus clouds – Part 1: Cirrus types
Atmospheric Chemistry and Physics
title A microphysics guide to cirrus clouds – Part 1: Cirrus types
title_full A microphysics guide to cirrus clouds – Part 1: Cirrus types
title_fullStr A microphysics guide to cirrus clouds – Part 1: Cirrus types
title_full_unstemmed A microphysics guide to cirrus clouds – Part 1: Cirrus types
title_short A microphysics guide to cirrus clouds – Part 1: Cirrus types
title_sort microphysics guide to cirrus clouds part 1 cirrus types
url https://www.atmos-chem-phys.net/16/3463/2016/acp-16-3463-2016.pdf
work_keys_str_mv AT mkramer amicrophysicsguidetocirruscloudspart1cirrustypes
AT crolf amicrophysicsguidetocirruscloudspart1cirrustypes
AT aluebke amicrophysicsguidetocirruscloudspart1cirrustypes
AT aluebke amicrophysicsguidetocirruscloudspart1cirrustypes
AT aafchine amicrophysicsguidetocirruscloudspart1cirrustypes
AT nspelten amicrophysicsguidetocirruscloudspart1cirrustypes
AT acosta amicrophysicsguidetocirruscloudspart1cirrustypes
AT jmeyer amicrophysicsguidetocirruscloudspart1cirrustypes
AT jmeyer amicrophysicsguidetocirruscloudspart1cirrustypes
AT mzoger amicrophysicsguidetocirruscloudspart1cirrustypes
AT jsmith amicrophysicsguidetocirruscloudspart1cirrustypes
AT rlherman amicrophysicsguidetocirruscloudspart1cirrustypes
AT bbuchholz amicrophysicsguidetocirruscloudspart1cirrustypes
AT bbuchholz amicrophysicsguidetocirruscloudspart1cirrustypes
AT vebert amicrophysicsguidetocirruscloudspart1cirrustypes
AT dbaumgardner amicrophysicsguidetocirruscloudspart1cirrustypes
AT sborrmann amicrophysicsguidetocirruscloudspart1cirrustypes
AT mklingebiel amicrophysicsguidetocirruscloudspart1cirrustypes
AT mklingebiel amicrophysicsguidetocirruscloudspart1cirrustypes
AT lavallone amicrophysicsguidetocirruscloudspart1cirrustypes
AT lavallone amicrophysicsguidetocirruscloudspart1cirrustypes
AT mkramer microphysicsguidetocirruscloudspart1cirrustypes
AT crolf microphysicsguidetocirruscloudspart1cirrustypes
AT aluebke microphysicsguidetocirruscloudspart1cirrustypes
AT aluebke microphysicsguidetocirruscloudspart1cirrustypes
AT aafchine microphysicsguidetocirruscloudspart1cirrustypes
AT nspelten microphysicsguidetocirruscloudspart1cirrustypes
AT acosta microphysicsguidetocirruscloudspart1cirrustypes
AT jmeyer microphysicsguidetocirruscloudspart1cirrustypes
AT jmeyer microphysicsguidetocirruscloudspart1cirrustypes
AT mzoger microphysicsguidetocirruscloudspart1cirrustypes
AT jsmith microphysicsguidetocirruscloudspart1cirrustypes
AT rlherman microphysicsguidetocirruscloudspart1cirrustypes
AT bbuchholz microphysicsguidetocirruscloudspart1cirrustypes
AT bbuchholz microphysicsguidetocirruscloudspart1cirrustypes
AT vebert microphysicsguidetocirruscloudspart1cirrustypes
AT dbaumgardner microphysicsguidetocirruscloudspart1cirrustypes
AT sborrmann microphysicsguidetocirruscloudspart1cirrustypes
AT mklingebiel microphysicsguidetocirruscloudspart1cirrustypes
AT mklingebiel microphysicsguidetocirruscloudspart1cirrustypes
AT lavallone microphysicsguidetocirruscloudspart1cirrustypes
AT lavallone microphysicsguidetocirruscloudspart1cirrustypes