A microphysics guide to cirrus clouds – Part 1: Cirrus types
The microphysical and radiative properties of cirrus clouds continue to be beyond understanding and thus still represent one of the largest uncertainties in the prediction of the Earth's climate (IPCC, 2013). Our study aims to provide a guide to cirrus microphysics, which is compiled from...
Main Authors: | , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2016-03-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/16/3463/2016/acp-16-3463-2016.pdf |
_version_ | 1819292137460596736 |
---|---|
author | M. Krämer C. Rolf A. Luebke A. Luebke A. Afchine N. Spelten A. Costa J. Meyer J. Meyer M. Zöger J. Smith R. L. Herman B. Buchholz B. Buchholz V. Ebert D. Baumgardner S. Borrmann M. Klingebiel M. Klingebiel L. Avallone L. Avallone |
author_facet | M. Krämer C. Rolf A. Luebke A. Luebke A. Afchine N. Spelten A. Costa J. Meyer J. Meyer M. Zöger J. Smith R. L. Herman B. Buchholz B. Buchholz V. Ebert D. Baumgardner S. Borrmann M. Klingebiel M. Klingebiel L. Avallone L. Avallone |
author_sort | M. Krämer |
collection | DOAJ |
description | The microphysical and radiative properties of cirrus clouds continue
to be beyond understanding and thus still represent one of the
largest uncertainties in the prediction of the Earth's climate
(IPCC, 2013). Our study aims to provide a guide to cirrus
microphysics, which is compiled from an extensive set of model
simulations, covering the broad range of atmospheric conditions for
cirrus formation and evolution. The model results are portrayed in
the same parameter space as field measurements, i.e., in the Ice
Water Content-Temperature (IWC-T) parameter space. We validate
this cirrus analysis approach by evaluating cirrus data sets from
17 aircraft campaigns, conducted in the last 15 years,
spending about 94 h in cirrus over Europe, Australia, Brazil
as well as South and North America. Altogether, the approach
of this study is to track cirrus IWC development with temperature by
means of model simulations, compare with observations and then
assign, to a certain degree, cirrus microphysics to the
observations. Indeed, the field observations show characteristics
expected from the simulated Cirrus Guide. For example, high (low) IWCs
are found together with high (low) ice crystal concentrations
<i>N</i><sub>ice</sub>.
<br><br>
An important finding from our study is the classification of two
types of cirrus with differing formation mechanisms and
microphysical properties: the first cirrus type forms directly as
ice (in situ origin cirrus) and splits in two subclasses, depending
on the prevailing strength of the updraft: in slow updrafts these
cirrus are rather thin with lower IWCs, while in fast updrafts
thicker cirrus with higher IWCs can form. The second type consists
predominantly of thick cirrus originating from mixed phase clouds
(i.e., via freezing of liquid droplets – liquid origin cirrus),
which are completely glaciated while lifting to the cirrus formation
temperature region (< 235 K). In the European field
campaigns, slow updraft in situ origin cirrus occur frequently in
low- and high-pressure systems, while fast updraft in situ cirrus
appear in conjunction with jet streams or gravity waves. Also,
liquid origin cirrus mostly related to warm conveyor belts are
found. In the US and tropical campaigns, thick liquid origin cirrus
which are formed in large convective systems are detected more
frequently. |
first_indexed | 2024-12-24T03:49:45Z |
format | Article |
id | doaj.art-94e304a25f984e8a9487c23804130ddc |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-24T03:49:45Z |
publishDate | 2016-03-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-94e304a25f984e8a9487c23804130ddc2022-12-21T17:16:36ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242016-03-01163463348310.5194/acp-16-3463-2016A microphysics guide to cirrus clouds – Part 1: Cirrus typesM. Krämer0C. Rolf1A. Luebke2A. Luebke3A. Afchine4N. Spelten5A. Costa6J. Meyer7J. Meyer8M. Zöger9J. Smith10R. L. Herman11B. Buchholz12B. Buchholz13V. Ebert14D. Baumgardner15S. Borrmann16M. Klingebiel17M. Klingebiel18L. Avallone19L. Avallone20Research Center Jülich, Institute for Energy and Climate Research-7, Jülich, GermanyResearch Center Jülich, Institute for Energy and Climate Research-7, Jülich, GermanyResearch Center Jülich, Institute for Energy and Climate Research-7, Jülich, Germanyformerly at: University of Colorado, Laboratory for Atmospheric and Space Physics, Boulder, CO, USAResearch Center Jülich, Institute for Energy and Climate Research-7, Jülich, GermanyResearch Center Jülich, Institute for Energy and Climate Research-7, Jülich, GermanyResearch Center Jülich, Institute for Energy and Climate Research-7, Jülich, GermanyResearch Center Jülich, Institute for Energy and Climate Research-7, Jülich, Germanynow at: Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, Unit “Exposure Scenarios”, Dortmund, GermanyDeutsches Zentrum für Luft- und Raumfahrt, Flugexperimente – Mess- und Sensortechnik, Wessling, GermanyHarvard University, Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAPhysikalisch-Technische Bundesanstalt, Braunschweig, Germanynow at: Princeton University, Department of Civil and Environmental Engineering, USAPhysikalisch-Technische Bundesanstalt, Braunschweig, GermanyDroplet Measurement Technologies, Boulder, CO, USAJohannes-Gutenberg University and Max-Planck Institute for Chemistry, Mainz, GermanyJohannes-Gutenberg University and Max-Planck Institute for Chemistry, Mainz, Germanynow at: Max-Planck-Institute for Meteorology, Hamburg, GermanyDivision of Atmospheric and Geospace Sciences, National Science Foundation, Arlington, VA, USAformerly at: University of Colorado, Laboratory for Atmospheric and Space Physics, Boulder, CO, USAThe microphysical and radiative properties of cirrus clouds continue to be beyond understanding and thus still represent one of the largest uncertainties in the prediction of the Earth's climate (IPCC, 2013). Our study aims to provide a guide to cirrus microphysics, which is compiled from an extensive set of model simulations, covering the broad range of atmospheric conditions for cirrus formation and evolution. The model results are portrayed in the same parameter space as field measurements, i.e., in the Ice Water Content-Temperature (IWC-T) parameter space. We validate this cirrus analysis approach by evaluating cirrus data sets from 17 aircraft campaigns, conducted in the last 15 years, spending about 94 h in cirrus over Europe, Australia, Brazil as well as South and North America. Altogether, the approach of this study is to track cirrus IWC development with temperature by means of model simulations, compare with observations and then assign, to a certain degree, cirrus microphysics to the observations. Indeed, the field observations show characteristics expected from the simulated Cirrus Guide. For example, high (low) IWCs are found together with high (low) ice crystal concentrations <i>N</i><sub>ice</sub>. <br><br> An important finding from our study is the classification of two types of cirrus with differing formation mechanisms and microphysical properties: the first cirrus type forms directly as ice (in situ origin cirrus) and splits in two subclasses, depending on the prevailing strength of the updraft: in slow updrafts these cirrus are rather thin with lower IWCs, while in fast updrafts thicker cirrus with higher IWCs can form. The second type consists predominantly of thick cirrus originating from mixed phase clouds (i.e., via freezing of liquid droplets – liquid origin cirrus), which are completely glaciated while lifting to the cirrus formation temperature region (< 235 K). In the European field campaigns, slow updraft in situ origin cirrus occur frequently in low- and high-pressure systems, while fast updraft in situ cirrus appear in conjunction with jet streams or gravity waves. Also, liquid origin cirrus mostly related to warm conveyor belts are found. In the US and tropical campaigns, thick liquid origin cirrus which are formed in large convective systems are detected more frequently.https://www.atmos-chem-phys.net/16/3463/2016/acp-16-3463-2016.pdf |
spellingShingle | M. Krämer C. Rolf A. Luebke A. Luebke A. Afchine N. Spelten A. Costa J. Meyer J. Meyer M. Zöger J. Smith R. L. Herman B. Buchholz B. Buchholz V. Ebert D. Baumgardner S. Borrmann M. Klingebiel M. Klingebiel L. Avallone L. Avallone A microphysics guide to cirrus clouds – Part 1: Cirrus types Atmospheric Chemistry and Physics |
title | A microphysics guide to cirrus clouds – Part 1: Cirrus types |
title_full | A microphysics guide to cirrus clouds – Part 1: Cirrus types |
title_fullStr | A microphysics guide to cirrus clouds – Part 1: Cirrus types |
title_full_unstemmed | A microphysics guide to cirrus clouds – Part 1: Cirrus types |
title_short | A microphysics guide to cirrus clouds – Part 1: Cirrus types |
title_sort | microphysics guide to cirrus clouds part 1 cirrus types |
url | https://www.atmos-chem-phys.net/16/3463/2016/acp-16-3463-2016.pdf |
work_keys_str_mv | AT mkramer amicrophysicsguidetocirruscloudspart1cirrustypes AT crolf amicrophysicsguidetocirruscloudspart1cirrustypes AT aluebke amicrophysicsguidetocirruscloudspart1cirrustypes AT aluebke amicrophysicsguidetocirruscloudspart1cirrustypes AT aafchine amicrophysicsguidetocirruscloudspart1cirrustypes AT nspelten amicrophysicsguidetocirruscloudspart1cirrustypes AT acosta amicrophysicsguidetocirruscloudspart1cirrustypes AT jmeyer amicrophysicsguidetocirruscloudspart1cirrustypes AT jmeyer amicrophysicsguidetocirruscloudspart1cirrustypes AT mzoger amicrophysicsguidetocirruscloudspart1cirrustypes AT jsmith amicrophysicsguidetocirruscloudspart1cirrustypes AT rlherman amicrophysicsguidetocirruscloudspart1cirrustypes AT bbuchholz amicrophysicsguidetocirruscloudspart1cirrustypes AT bbuchholz amicrophysicsguidetocirruscloudspart1cirrustypes AT vebert amicrophysicsguidetocirruscloudspart1cirrustypes AT dbaumgardner amicrophysicsguidetocirruscloudspart1cirrustypes AT sborrmann amicrophysicsguidetocirruscloudspart1cirrustypes AT mklingebiel amicrophysicsguidetocirruscloudspart1cirrustypes AT mklingebiel amicrophysicsguidetocirruscloudspart1cirrustypes AT lavallone amicrophysicsguidetocirruscloudspart1cirrustypes AT lavallone amicrophysicsguidetocirruscloudspart1cirrustypes AT mkramer microphysicsguidetocirruscloudspart1cirrustypes AT crolf microphysicsguidetocirruscloudspart1cirrustypes AT aluebke microphysicsguidetocirruscloudspart1cirrustypes AT aluebke microphysicsguidetocirruscloudspart1cirrustypes AT aafchine microphysicsguidetocirruscloudspart1cirrustypes AT nspelten microphysicsguidetocirruscloudspart1cirrustypes AT acosta microphysicsguidetocirruscloudspart1cirrustypes AT jmeyer microphysicsguidetocirruscloudspart1cirrustypes AT jmeyer microphysicsguidetocirruscloudspart1cirrustypes AT mzoger microphysicsguidetocirruscloudspart1cirrustypes AT jsmith microphysicsguidetocirruscloudspart1cirrustypes AT rlherman microphysicsguidetocirruscloudspart1cirrustypes AT bbuchholz microphysicsguidetocirruscloudspart1cirrustypes AT bbuchholz microphysicsguidetocirruscloudspart1cirrustypes AT vebert microphysicsguidetocirruscloudspart1cirrustypes AT dbaumgardner microphysicsguidetocirruscloudspart1cirrustypes AT sborrmann microphysicsguidetocirruscloudspart1cirrustypes AT mklingebiel microphysicsguidetocirruscloudspart1cirrustypes AT mklingebiel microphysicsguidetocirruscloudspart1cirrustypes AT lavallone microphysicsguidetocirruscloudspart1cirrustypes AT lavallone microphysicsguidetocirruscloudspart1cirrustypes |