VisGraB: A Benchmark for Vision-Based Grasping

We present a database and a software tool, VisGraB, for benchmarking of methods for vision-based grasping of unknown objects with no prior object knowledge. The benchmark is a combined real-world and simulated experimental setup. Stereo images of real scenes containing several objects in different c...

সম্পূর্ণ বিবরণ

গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Kootstra Gert, Popović Mila, Jørgensen Jimmy Alison, Kragic Danica, Petersen Henrik Gordon, Krüger Norbert
বিন্যাস: প্রবন্ধ
ভাষা:English
প্রকাশিত: De Gruyter 2012-06-01
মালা:Paladyn
বিষয়গুলি:
অনলাইন ব্যবহার করুন:https://doi.org/10.2478/s13230-012-0020-5
বিবরন
সংক্ষিপ্ত:We present a database and a software tool, VisGraB, for benchmarking of methods for vision-based grasping of unknown objects with no prior object knowledge. The benchmark is a combined real-world and simulated experimental setup. Stereo images of real scenes containing several objects in different configurations are included in the database. The user needs to provide a method for grasp generation based on the real visual input. The grasps are then planned, executed, and evaluated by the provided grasp simulator where several grasp-quality measures are used for evaluation. This setup has the advantage that a large number of grasps can be executed and evaluated while dealing with dynamics and the noise and uncertainty present in the real world images. VisGraB enables a fair comparison among different grasping methods. The user furthermore does not need to deal with robot hardware, focusing on the vision methods instead. As a baseline, benchmark results of our grasp strategy are included.
আইএসএসএন:2081-4836