VisGraB: A Benchmark for Vision-Based Grasping
We present a database and a software tool, VisGraB, for benchmarking of methods for vision-based grasping of unknown objects with no prior object knowledge. The benchmark is a combined real-world and simulated experimental setup. Stereo images of real scenes containing several objects in different c...
Hauptverfasser: | Kootstra Gert, Popović Mila, Jørgensen Jimmy Alison, Kragic Danica, Petersen Henrik Gordon, Krüger Norbert |
---|---|
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
De Gruyter
2012-06-01
|
Schriftenreihe: | Paladyn |
Schlagworte: | |
Online Zugang: | https://doi.org/10.2478/s13230-012-0020-5 |
Ähnliche Einträge
Ähnliche Einträge
-
Model-Based Grasping of Unknown Objects from a Random Pile
von: Bruno Sauvet, et al.
Veröffentlicht: (2019-09-01) -
Robotic Grasping of Unknown Objects Based on Deep Learning-Based Feature Detection
von: Kai Sherng Khor, et al.
Veröffentlicht: (2024-07-01) -
Performance measures to benchmark the grasping, manipulation, and assembly of deformable objects typical to manufacturing applications
von: Kenneth Kimble, et al.
Veröffentlicht: (2022-11-01) -
Imitation Learning of Whole-Body Grasps
von: Hsiao, Kaijen, et al.
Veröffentlicht: (2005) -
An Accessible, Open-Source Dexterity Test: Evaluating the Grasping and Dexterous Manipulation Capabilities of Humans and Robots
von: Nathan Elangovan, et al.
Veröffentlicht: (2022-04-01)