VLDNet: An Ultra-Lightweight Crop Disease Identification Network
Existing deep learning methods usually adopt deeper and wider network structures to achieve better performance. However, we found that this rule does not apply well to crop disease identification tasks, which inspired us to rethink the design paradigm of disease identification models. Crop diseases...
Главные авторы: | Xiaopeng Li, Yichi Zhang, Yuhan Peng, Shuqin Li |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
MDPI AG
2023-07-01
|
Серии: | Agriculture |
Предметы: | |
Online-ссылка: | https://www.mdpi.com/2077-0472/13/8/1482 |
Схожие документы
-
SheepFaceNet: A Speed–Accuracy Balanced Model for Sheep Face Recognition
по: Xiaopeng Li, и др.
Опубликовано: (2023-06-01) -
RepDwNet: Lightweight Deep Learning Model for Special Biological Blood Raman Spectra Analysis
по: Jiongheng He, и др.
Опубликовано: (2024-02-01) -
LMS-Net: A Light-Weight Network for Mungbean Salt Stress Identification
по: Haomiao Zhang, и др.
Опубликовано: (2024-01-01) -
Improved Lightweight YOLOv8 Model for Rice Disease Detection in Multi-Scale Scenarios
по: Jinfeng Wang, и др.
Опубликовано: (2025-02-01) -
Research and Explainable Analysis of a Real-Time Passion Fruit Detection Model Based on FSOne-YOLOv7
по: Juji Ou, и др.
Опубликовано: (2023-07-01)