VLDNet: An Ultra-Lightweight Crop Disease Identification Network
Existing deep learning methods usually adopt deeper and wider network structures to achieve better performance. However, we found that this rule does not apply well to crop disease identification tasks, which inspired us to rethink the design paradigm of disease identification models. Crop diseases...
Автори: | Xiaopeng Li, Yichi Zhang, Yuhan Peng, Shuqin Li |
---|---|
Формат: | Стаття |
Мова: | English |
Опубліковано: |
MDPI AG
2023-07-01
|
Серія: | Agriculture |
Предмети: | |
Онлайн доступ: | https://www.mdpi.com/2077-0472/13/8/1482 |
Схожі ресурси
Схожі ресурси
-
SheepFaceNet: A Speed–Accuracy Balanced Model for Sheep Face Recognition
за авторством: Xiaopeng Li, та інші
Опубліковано: (2023-06-01) -
RepDwNet: Lightweight Deep Learning Model for Special Biological Blood Raman Spectra Analysis
за авторством: Jiongheng He, та інші
Опубліковано: (2024-02-01) -
LMS-Net: A Light-Weight Network for Mungbean Salt Stress Identification
за авторством: Haomiao Zhang, та інші
Опубліковано: (2024-01-01) -
Improved Lightweight YOLOv8 Model for Rice Disease Detection in Multi-Scale Scenarios
за авторством: Jinfeng Wang, та інші
Опубліковано: (2025-02-01) -
Research and Explainable Analysis of a Real-Time Passion Fruit Detection Model Based on FSOne-YOLOv7
за авторством: Juji Ou, та інші
Опубліковано: (2023-07-01)