A Note on Commutative Nil-Clean Corners in Unital Rings
We shall prove that if $R$ is a ring with a family of orthogonal idempotents $\{e_i\}_{i=1}^n$ having sum $1$ such that each corner subring $e_iRe_i$ is commutative nil-clean, then $R$ is too nil-clean, by showing that this assertion is actually equivalent to the statement established by Breaz-C\v{a...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Irkutsk State University
2019-09-01
|
Series: | Известия Иркутского государственного университета: Серия "Математика" |
Subjects: | |
Online Access: | http://mathizv.isu.ru/en/article/file?id=1304 |
_version_ | 1818472292760420352 |
---|---|
author | P.V. Danchev |
author_facet | P.V. Danchev |
author_sort | P.V. Danchev |
collection | DOAJ |
description | We shall prove that if $R$ is a ring with a family of orthogonal idempotents $\{e_i\}_{i=1}^n$ having sum $1$ such that each corner subring $e_iRe_i$ is commutative nil-clean, then $R$ is too nil-clean, by showing that this assertion is actually equivalent to the statement established by Breaz-C\v{a}lug\v{a}reanu-Danchev-Micu in Lin. Algebra \& Appl. (2013) that if $R$ is a commutative nil-clean ring, then the full matrix ring $\mathbbm{M}_n(R)$ is also nil-clean for any size $n$. Likewise, the present proof somewhat supplies our recent result in Bull. Iran. Math. Soc. (2018) concerning strongly nil-clean corner rings as well as it gives a new strategy for further developments of the investigated theme. |
first_indexed | 2024-04-14T04:05:03Z |
format | Article |
id | doaj.art-94e72713fe9e4332955d8fbe33a1c54a |
institution | Directory Open Access Journal |
issn | 1997-7670 2541-8785 |
language | English |
last_indexed | 2024-04-14T04:05:03Z |
publishDate | 2019-09-01 |
publisher | Irkutsk State University |
record_format | Article |
series | Известия Иркутского государственного университета: Серия "Математика" |
spelling | doaj.art-94e72713fe9e4332955d8fbe33a1c54a2022-12-22T02:13:23ZengIrkutsk State UniversityИзвестия Иркутского государственного университета: Серия "Математика"1997-76702541-87852019-09-0129139https://doi.org/10.26516/1997-7670.2019.29.3A Note on Commutative Nil-Clean Corners in Unital RingsP.V. DanchevWe shall prove that if $R$ is a ring with a family of orthogonal idempotents $\{e_i\}_{i=1}^n$ having sum $1$ such that each corner subring $e_iRe_i$ is commutative nil-clean, then $R$ is too nil-clean, by showing that this assertion is actually equivalent to the statement established by Breaz-C\v{a}lug\v{a}reanu-Danchev-Micu in Lin. Algebra \& Appl. (2013) that if $R$ is a commutative nil-clean ring, then the full matrix ring $\mathbbm{M}_n(R)$ is also nil-clean for any size $n$. Likewise, the present proof somewhat supplies our recent result in Bull. Iran. Math. Soc. (2018) concerning strongly nil-clean corner rings as well as it gives a new strategy for further developments of the investigated theme.http://mathizv.isu.ru/en/article/file?id=1304nil-clean ringsnilpotentsidempotentscorners |
spellingShingle | P.V. Danchev A Note on Commutative Nil-Clean Corners in Unital Rings Известия Иркутского государственного университета: Серия "Математика" nil-clean rings nilpotents idempotents corners |
title | A Note on Commutative Nil-Clean Corners in Unital Rings |
title_full | A Note on Commutative Nil-Clean Corners in Unital Rings |
title_fullStr | A Note on Commutative Nil-Clean Corners in Unital Rings |
title_full_unstemmed | A Note on Commutative Nil-Clean Corners in Unital Rings |
title_short | A Note on Commutative Nil-Clean Corners in Unital Rings |
title_sort | note on commutative nil clean corners in unital rings |
topic | nil-clean rings nilpotents idempotents corners |
url | http://mathizv.isu.ru/en/article/file?id=1304 |
work_keys_str_mv | AT pvdanchev anoteoncommutativenilcleancornersinunitalrings AT pvdanchev noteoncommutativenilcleancornersinunitalrings |