A Note on Commutative Nil-Clean Corners in Unital Rings

We shall prove that if $R$ is a ring with a family of orthogonal idempotents $\{e_i\}_{i=1}^n$ having sum $1$ such that each corner subring $e_iRe_i$ is commutative nil-clean, then $R$ is too nil-clean, by showing that this assertion is actually equivalent to the statement established by Breaz-C\v{a...

Full description

Bibliographic Details
Main Author: P.V. Danchev
Format: Article
Language:English
Published: Irkutsk State University 2019-09-01
Series:Известия Иркутского государственного университета: Серия "Математика"
Subjects:
Online Access:http://mathizv.isu.ru/en/article/file?id=1304
_version_ 1818472292760420352
author P.V. Danchev
author_facet P.V. Danchev
author_sort P.V. Danchev
collection DOAJ
description We shall prove that if $R$ is a ring with a family of orthogonal idempotents $\{e_i\}_{i=1}^n$ having sum $1$ such that each corner subring $e_iRe_i$ is commutative nil-clean, then $R$ is too nil-clean, by showing that this assertion is actually equivalent to the statement established by Breaz-C\v{a}lug\v{a}reanu-Danchev-Micu in Lin. Algebra \& Appl. (2013) that if $R$ is a commutative nil-clean ring, then the full matrix ring $\mathbbm{M}_n(R)$ is also nil-clean for any size $n$. Likewise, the present proof somewhat supplies our recent result in Bull. Iran. Math. Soc. (2018) concerning strongly nil-clean corner rings as well as it gives a new strategy for further developments of the investigated theme.
first_indexed 2024-04-14T04:05:03Z
format Article
id doaj.art-94e72713fe9e4332955d8fbe33a1c54a
institution Directory Open Access Journal
issn 1997-7670
2541-8785
language English
last_indexed 2024-04-14T04:05:03Z
publishDate 2019-09-01
publisher Irkutsk State University
record_format Article
series Известия Иркутского государственного университета: Серия "Математика"
spelling doaj.art-94e72713fe9e4332955d8fbe33a1c54a2022-12-22T02:13:23ZengIrkutsk State UniversityИзвестия Иркутского государственного университета: Серия "Математика"1997-76702541-87852019-09-0129139https://doi.org/10.26516/1997-7670.2019.29.3A Note on Commutative Nil-Clean Corners in Unital RingsP.V. DanchevWe shall prove that if $R$ is a ring with a family of orthogonal idempotents $\{e_i\}_{i=1}^n$ having sum $1$ such that each corner subring $e_iRe_i$ is commutative nil-clean, then $R$ is too nil-clean, by showing that this assertion is actually equivalent to the statement established by Breaz-C\v{a}lug\v{a}reanu-Danchev-Micu in Lin. Algebra \& Appl. (2013) that if $R$ is a commutative nil-clean ring, then the full matrix ring $\mathbbm{M}_n(R)$ is also nil-clean for any size $n$. Likewise, the present proof somewhat supplies our recent result in Bull. Iran. Math. Soc. (2018) concerning strongly nil-clean corner rings as well as it gives a new strategy for further developments of the investigated theme.http://mathizv.isu.ru/en/article/file?id=1304nil-clean ringsnilpotentsidempotentscorners
spellingShingle P.V. Danchev
A Note on Commutative Nil-Clean Corners in Unital Rings
Известия Иркутского государственного университета: Серия "Математика"
nil-clean rings
nilpotents
idempotents
corners
title A Note on Commutative Nil-Clean Corners in Unital Rings
title_full A Note on Commutative Nil-Clean Corners in Unital Rings
title_fullStr A Note on Commutative Nil-Clean Corners in Unital Rings
title_full_unstemmed A Note on Commutative Nil-Clean Corners in Unital Rings
title_short A Note on Commutative Nil-Clean Corners in Unital Rings
title_sort note on commutative nil clean corners in unital rings
topic nil-clean rings
nilpotents
idempotents
corners
url http://mathizv.isu.ru/en/article/file?id=1304
work_keys_str_mv AT pvdanchev anoteoncommutativenilcleancornersinunitalrings
AT pvdanchev noteoncommutativenilcleancornersinunitalrings