Monte Carlo approach to the evaluation of the security of device-independent quantum key distribution

We present a generic study on the information-theoretic security of multi-setting device-independent quantum key distribution (DIQKD) protocols, i.e. ones that involve more than two measurements (or inputs) for each party to perform, and yield dichotomic results (or outputs). The approach we develop...

Full description

Bibliographic Details
Main Author: Hong-Yi Su
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/ad141a
Description
Summary:We present a generic study on the information-theoretic security of multi-setting device-independent quantum key distribution (DIQKD) protocols, i.e. ones that involve more than two measurements (or inputs) for each party to perform, and yield dichotomic results (or outputs). The approach we develop, when applied in protocols with either symmetric or asymmetric Bell experiments, yields nontrivial upper bounds on the secure key rates, along with the detection efficiencies required upon the measuring devices. The results imply that increasing the number of measurements may lower the detection efficiency required by the security criterion. The improvement, however, depends on (i) the choice of multi-setting Bell inequalities chosen to be tested in a protocol, and (ii) either a symmetric or asymmetric Bell experiment is considered. Our results serve as an advance toward the quest for evaluating security and reducing efficiency requirement of applying DIQKD in scenarios without heralding.
ISSN:1367-2630