Purely Goldie Extending Modules

An -module  is extending if every submodule of   is essential in a direct summand of . Following Clark, an -module  is purely extending if every submodule of   is essential in a pure submodule of . It is clear purely extending is generalization of extending modules. Following Birkenmeier and Tercan...

Full description

Bibliographic Details
Main Authors: Saad A. Al-Saadi, Ikbal A. Omer
Format: Article
Language:English
Published: University of Baghdad 2017-03-01
Series:Ibn Al-Haitham Journal for Pure and Applied Sciences
Subjects:
Online Access:https://jih.uobaghdad.edu.iq/index.php/j/article/view/219
Description
Summary:An -module  is extending if every submodule of   is essential in a direct summand of . Following Clark, an -module  is purely extending if every submodule of   is essential in a pure submodule of . It is clear purely extending is generalization of extending modules. Following Birkenmeier and Tercan, an -module     is Goldie extending if, for each submodule      of , there is a direct summand D of such that . In this paper, we introduce and study class of modules which are proper generalization of both the purely extending modules and -extending modules. We call an -module  is purely Goldie extending if, for each , there is a pure submodule P of such that  . Many characterizations and properties of purely Goldie extending modules are given. Also, we discuss when a direct sum of purely Goldie extending modules is purely Goldie extending and moreover we give a sufficient condition to make this property of purely  Goldie extending modules is valid. 
ISSN:1609-4042
2521-3407