Subwavelength Localization of Atomic Excitation Using Electromagnetically Induced Transparency

We report an experiment in which an atomic excitation is localized to a spatial width that is a factor of 8 smaller than the wavelength of the incident light. The experiment utilizes the sensitivity of the dark state of electromagnetically induced transparency (EIT) to the intensity of the coupling...

Full description

Bibliographic Details
Main Authors: J. A. Miles, Z. J. Simmons, D. D. Yavuz
Format: Article
Language:English
Published: American Physical Society 2013-09-01
Series:Physical Review X
Online Access:http://doi.org/10.1103/PhysRevX.3.031014
Description
Summary:We report an experiment in which an atomic excitation is localized to a spatial width that is a factor of 8 smaller than the wavelength of the incident light. The experiment utilizes the sensitivity of the dark state of electromagnetically induced transparency (EIT) to the intensity of the coupling laser beam. A standing-wave coupling laser with a sinusoidally varying intensity yields tightly confined Raman excitations during the EIT process. The excitations, located near the nodes of the intensity profile, have a width of 100 nm. The experiment is performed using ultracold ^{87}Rb atoms trapped in an optical dipole trap, and atomic localization is achieved with EIT pulses that are approximately 100 ns long. To probe subwavelength atom localization, we have developed a technique that can measure the width of the atomic excitations with nanometer spatial resolution.
ISSN:2160-3308